Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuous-Time Models of Arrival Times and Optimization Methods for Variable Selection

Thumbnail
View / Download
2.2 Mb
Date
2018
Author
Lindon, Michael Scott
Advisor
Tokdar, Surya T
Repository Usage Stats
296
views
391
downloads
Abstract

This thesis naturally divides itself into two sections. The first two chapters concern

the development of Bayesian semi-parametric models for arrival times. Chapter 2

considers Bayesian inference for a Gaussian process modulated temporal inhomogeneous Poisson point process, made challenging by an intractable likelihood. The intractable likelihood is circumvented by two novel data augmentation strategies which result in Gaussian measurements of the Gaussian process, connecting the model with a larger literature on modelling time-dependent functions from Bayesian non-parametric regression to time series. A scalable state-space representation of the Matern Gaussian process in 1 dimension is used to provide access to linear time filtering algorithms for performing inference. An MCMC algorithm based on Gibbs sampling with slice-sampling steps is provided and illustrated on simulated and real datasets. The MCMC algorithm exhibits excellent mixing and scalability.

Chapter 3 builds on the previous model to detect specific signals in temporal point patterns arising in neuroscience. The firing of a neuron over time in response to an external stimulus generates a temporal point pattern or ``spike train''. Of special interest is how neurons encode information from dual simultaneous external stimuli. Among many hypotheses is the presence multiplexing - interleaving periods of firing as it would for each individual stimulus in isolation. Statistical models are developed to quantify evidence for a variety of experimental hypotheses. Each experimental hypothesis translates to a particular form of intensity function for the dual stimuli trials. The dual stimuli intensity is modelled as a dynamic superposition of single stimulus intensities, defined by a time-dependent weight function that is modelled non-parametrically as a transformed Gaussian process. Experiments on simulated data demonstrate that the model is able to learn the weight function very well, but other model parameters which have meaningful physical interpretations less well.

Chapters 4 and 5 concern mathematical optimization and theoretical properties of Bayesian models for variable selection. Such optimizations are challenging due to non-convexity, non-smoothness and discontinuity of the objective. Chapter 4 presents advances in continuous optimization algorithms based on relating mathematical and statistical approaches defined in connection with several iterative algorithms for penalized linear

regression. I demonstrate the equivalence of parameter mappings using EM under

several data augmentation strategies - location-mixture representations, orthogonal data augmentation and LQ design matrix decompositions. I show that these

model-based approaches are equivalent to algorithmic derivation via proximal

gradient methods. This provides new perspectives on model-based and algorithmic

approaches, connects across several research themes in optimization and statistics,

and provides access, beyond EM, to relevant theory from the proximal gradient

and convex analysis literatures.

Chapter 5 presents a modern and technologically up-to-date approach to discrete optimization for variable selection models through their formulation as mixed integer programming models. Mixed integer quadratic and quadratically constrained programs are developed for the point-mass-Laplace and g-prior. Combined with warm-starts and optimality-based bounds tightening procedures provided by the heuristics of the previous chapter, the MIQP model developed for the point-mass-Laplace prior converges to global optimality in a matter of seconds for moderately sized real datasets. The obtained estimator is demonstrated to possess superior predictive performance over that obtained by cross-validated lasso in a number of real datasets. The MIQCP model for the g-prior struggles to match the performance of the former and highlights the fact that the performance of the mixed integer solver depends critically on the ability of the prior to rapidly concentrate posterior mass on good models.

Type
Dissertation
Department
Statistical Science
Subject
Statistics
Bayesian
Mixed Integer
Nonparametric
Optimization
Poisson Process
Variable Selection
Permalink
https://hdl.handle.net/10161/16858
Citation
Lindon, Michael Scott (2018). Continuous-Time Models of Arrival Times and Optimization Methods for Variable Selection. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/16858.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University