Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional Brain Networks Underlying Anticipation in Motivated Behavior

Thumbnail
View / Download
6.1 Mb
Date
2018
Author
Vu, Mai-Anh Thi
Advisors
Adcock, R. Alison
Dzirasa, Kafui
Repository Usage Stats
164
views
138
downloads
Abstract

Anticipation is a state of expectancy for something that will happen, and it allows us to use past learning to prepare for and make predictions about the future. Studies have shown that anticipation influences behavioral performance, learning, and memory, and studies implicate reward-related brain circuitry. However, few studies have investigated the neural underpinnings of anticipation on a brain-wide network scale . In this set of experiments, I take an interdisciplinary cross-species approach, using in-vivo electrophysiology in mice and functional magnetic resonance imaging (fMRI) in humans, to investigate brain networks underlying anticipation in motivated behavior. Using a data-driven machine learning approach, I characterize the anticipatory network in mice running through a T-maze, and show how it is affected by behavioral perturbation in the form of a task reversal, and circuit perturbation in the form of a genetic mutant mouse line. I also validate this network in a separate cohort of mice in a variation of the T-maze task that varies in difficulty, and show how activity in this network is modulated by task difficulty and intermediate instrumental goals. Finally, I investigate this network using fMRI in human subjects performing a trivia-based task to show how this network links curiosity, a more intrinsic form of motivation, to memory. The findings from these studies provide evidence at multiple levels and across multiple species for an anticipatory network that links motivational state to cognitive performance.

Type
Dissertation
Department
Neurobiology
Subject
Neurosciences
anticipation
brain
electrophysiology
fMRI
motivation
network
Permalink
https://hdl.handle.net/10161/16961
Citation
Vu, Mai-Anh Thi (2018). Functional Brain Networks Underlying Anticipation in Motivated Behavior. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/16961.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University