Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum.

Thumbnail
View / Download
3.8 Mb
Date
2014-09
Authors
Reid, David W
Chen, Qiang
Tay, Angeline S-L
Shenolikar, Shirish
Nicchitta, Christopher V
Repository Usage Stats
112
views
24
downloads
Abstract
The unfolded protein response (UPR) is a stress response program that reprograms cellular translation and gene expression in response to proteotoxic stress in the endoplasmic reticulum (ER). One of the primary means by which the UPR alleviates this stress is by reducing protein flux into the ER via a general suppression of protein synthesis and ER-specific mRNA degradation. We report here an additional UPR-induced mechanism for the reduction of protein flux into the ER, where mRNAs that encode signal sequences are released from the ER to the cytosol. By removing mRNAs from the site of translocation, this mechanism may serve as a potent means to transiently reduce ER protein folding load and restore proteostasis. These findings identify the dynamic subcellular localization of mRNAs and translation as a selective and rapid regulatory feature of the cellular response to protein folding stress.
Type
Journal article
Subject
Endoplasmic Reticulum
Polyribosomes
Cytosol
Fibroblasts
Animals
Mice
Dithiothreitol
RNA, Messenger
Protein Biosynthesis
Kinetics
Open Reading Frames
Unfolded Protein Response
Permalink
https://hdl.handle.net/10161/17236
Published Version (Please cite this version)
10.1016/j.cell.2014.08.012
Publication Info
Reid, David W; Chen, Qiang; Tay, Angeline S-L; Shenolikar, Shirish; & Nicchitta, Christopher V (2014). The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell, 158(6). pp. 1362-1374. 10.1016/j.cell.2014.08.012. Retrieved from https://hdl.handle.net/10161/17236.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Nicchitta

Christopher Vincent Nicchitta

Professor of Cell Biology
  Our laboratory studies the cellular architecture and regulation of protein synthesis, with the goal of understanding how cells regulate the subcellular organization and temporal dynamics of protein synthesis. We focus on mRNA localization - the process by which cells control where and when a protein is synthesized by localizing its mRNA to a discrete location(s) in the cell. Such regulation is critical for many aspects of cell dynamics, cell signaling and cell division. Of the diverse mRN
Shenolikar

Shirish Shenolikar

Professor Emeritus of Psychiatry and Behavioral Sciences
Protein phosphorylation controls a wide range of physiological processes in mammalian tissues. Phosphorylation state of cellular proteins is controlled by the opposing actions of protein kinases and phosphatases that are regulated by hormones, neurotransmitters, growth factors and other environmental cues. Our research attempts to understand the communication between protein kinases and phosphatases that dictates cellular protein phosphorylation and the cell's response to hormones. Over the
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University