Show simple item record

A slicing obstruction from the $\frac {10}{8}$ theorem

dc.contributor.author Vafaee, Faramarz
dc.contributor.author Donald, Andrew
dc.date.accessioned 2018-09-02T17:16:57Z
dc.date.available 2018-09-02T17:16:57Z
dc.date.issued 2016-08-29
dc.identifier.issn 0002-9939
dc.identifier.issn 1088-6826
dc.identifier.uri https://hdl.handle.net/10161/17368
dc.description.abstract © 2016 American Mathematical Society. From Furuta’s 10/8 theorem, we derive a smooth slicing obstruction for knots in S3 using a spin 4-manifold whose boundary is 0-surgery on a knot. We show that this obstruction is able to detect torsion elements in the smooth concordance group and find topologically slice knots which are not smoothly slice.
dc.language English
dc.publisher AMER MATHEMATICAL SOC
dc.relation.ispartof Proceedings of the American Mathematical Society
dc.relation.isversionof 10.1090/proc/13056
dc.subject Science & Technology
dc.subject Physical Sciences
dc.subject Mathematics, Applied
dc.subject Mathematics
dc.subject HOLOMORPHIC DISKS
dc.subject FLOER HOMOLOGY
dc.subject INVARIANTS
dc.subject 3-MANIFOLDS
dc.subject KNOTS
dc.title A slicing obstruction from the $\frac {10}{8}$ theorem
dc.type Journal article
dc.date.updated 2018-09-02T17:16:55Z
pubs.begin-page 5397
pubs.end-page 5405
pubs.issue 12
pubs.organisational-group Trinity College of Arts & Sciences
pubs.organisational-group Duke
pubs.organisational-group Mathematics
pubs.publication-status Published
pubs.volume 144


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record