Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Eliciting and Aggregating Information for Better Decision Making

Thumbnail
View / Download
1.3 Mb
Date
2018
Author
Freeman, Rupert
Advisor
Conitzer, Vincent
Repository Usage Stats
113
views
132
downloads
Abstract

In this thesis, we consider two classes of problems where algorithms are increasingly used to make, or assist in making, a wide range of decisions. The first class of problems we consider is the allocation of jointly owned resources among a group of agents, and the second is the elicitation and aggregation of probabilistic forecasts from agents regarding future events. Solutions to these problems must trade off between many competing objectives including economic efficiency, fairness between participants, and strategic concerns.

In the first part of the thesis, we consider shared resource allocation, where we relax two common assumptions in the fair divison literature. Firstly, we relax the assumption that goods are private, meaning that they must be allocated to only a single agent, and introduce a more general public decision making model. This allows us to incorporate ideas and techniques from fair division to define novel fairness notions in the public decisions setting. Second, we relax the assumption that decisions are made offline, and instead consider online decisions. In this setting, we are forced to make decisions based on limited information, while seeking to retain fairness and game-theoretic desiderata.

In the second part of the thesis, we consider the design of mechanisms for forecasting. We first consider a tradeoff between several desirable properties for wagering mechanisms, showing that the properties of Pareto efficiency, incentive compatibility, budget balance, and individual rationality are incompatible with one another. We propose two compromise solutions by relaxing either Pareto efficiency or incentive compatibility. Next, we consider the design of decentralized prediction markets, which are defined by the lack of any single trusted authority. As a consequence, markets must be closed by popular vote amongst a group of anonymous, untrusted arbiters. We design a mechanism that incentivizes arbiters to truthfully report their information even when they have a (possibly conflicting) stake in the market themselves.

Type
Dissertation
Department
Computer Science
Subject
Artificial intelligence
forecasting
multi-agent systems
resource allocation
Permalink
https://hdl.handle.net/10161/17448
Citation
Freeman, Rupert (2018). Eliciting and Aggregating Information for Better Decision Making. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/17448.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University