Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrochemical Disinfection of Liquid Human Waste Using Potentiodynamic Methods and Controlled Electrode Surface Chemistry

Thumbnail
View / Download
19.0 Mb
Date
2018
Author
Thostenson, James Owen
Advisors
Glass, Jeffrey T
Stoner, Brian R
Repository Usage Stats
105
views
66
downloads
Abstract

Roughly 40% of the world does not have access to appropriate sanitation of human generated waste water. Lack of infrastructure and poverty in developing nations has stymied the deployment of conventional sewage treatment practices. In helping to solve this global issue requires the development of an energy efficient, cost-effective, low-maintenance, and decentralized toilet system that can remediate human liquid waste, or, blackwater. Herein, electrochemical disinfection as a means of treating blackwater is investigated using degenerately boron-doped diamond and Magnéli-phase titanium sub-oxide electrodes. It is found that both can be operated in potentiodynamic modes to control surface chemistry and improve generation of biocidal oxidants such as hydrogen peroxide and chlorine

in blackwater containing solutions. Use of a packed-bed electrochemical reactor is also studied in the treatment of blackwater using Magnéli-phase titanium sub-oxide granular electrodes. It is found that bed-height, flow-rate, and blackwater chemistry

can greatly affect the effectiveness of electrochemical disinfection and stability of a packed-bed electrochemical reactor. Overall, these results highlight how existing electrode materials can be modified or controlled in-situ to inhibit fouling, generate

oxidants using less energy, and therefore disinfect blackwater pathogens more effectively.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Materials Science
Nanotechnology
Electrical engineering
Blackwater
Boron-Doped Diamond
Electrochemical Disinfection
Electrochemistry
Electrodes
Hydrogen Peroxide
Permalink
https://hdl.handle.net/10161/17487
Citation
Thostenson, James Owen (2018). Electrochemical Disinfection of Liquid Human Waste Using Potentiodynamic Methods and Controlled Electrode Surface Chemistry. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/17487.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University