Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive Data Representation and Analysis

Thumbnail
View / Download
31.0 Mb
Date
2018
Author
Xu, Jieren
Advisor
Xu, Jieren
Repository Usage Stats
175
views
169
downloads
Abstract

This dissertation introduces and analyzes algorithms that aim to adaptively handle complex datasets arising in the real-world applications. It contains two major parts. The first part describes an adaptive model of 1-dimensional signals that lies in the field of adaptive time-frequency analysis. It explains a current state-of-the-art work, named the Synchrosqueezed transform, in this field. Then it illustrates two proposed algorithms that use non-parametric regression to reveal the underlying os- cillatory patterns of the targeted 1-dimensional signal, as well as to estimate the instantaneous information, e.g., instantaneous frequency, phase, or amplitude func-

tions, by a statistical pattern driven model.

The second part proposes a population-based imaging technique for human brain

bundle/connectivity recovery. It applies local streamlines as novelly adopted learn- ing/testing features to segment the brain white matter and thus reconstruct the whole brain information. It also develops a module, named as the streamline diffu- sion filtering, to improve the streamline sampling procedure.

Even though these two parts are not related directly, they both rely on an align- ment step to register the latent variables to some coordinate system and thus to facilitate the final inference. Numerical results are shown to validate all the pro- posed algorithms.

Type
Dissertation
Department
Mathematics
Subject
Applied mathematics
Medical imaging
adaptive data analysis
mode decomposition
non-parametric regression
signal processing
statistical learning
structural connectivity analysis
Permalink
https://hdl.handle.net/10161/17503
Citation
Xu, Jieren (2018). Adaptive Data Representation and Analysis. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/17503.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University