Adaptive Data Representation and Analysis
This dissertation introduces and analyzes algorithms that aim to adaptively handle complex datasets arising in the real-world applications. It contains two major parts. The first part describes an adaptive model of 1-dimensional signals that lies in the field of adaptive time-frequency analysis. It explains a current state-of-the-art work, named the Synchrosqueezed transform, in this field. Then it illustrates two proposed algorithms that use non-parametric regression to reveal the underlying os- cillatory patterns of the targeted 1-dimensional signal, as well as to estimate the instantaneous information, e.g., instantaneous frequency, phase, or amplitude func-
tions, by a statistical pattern driven model.
The second part proposes a population-based imaging technique for human brain
bundle/connectivity recovery. It applies local streamlines as novelly adopted learn- ing/testing features to segment the brain white matter and thus reconstruct the whole brain information. It also develops a module, named as the streamline diffu- sion filtering, to improve the streamline sampling procedure.
Even though these two parts are not related directly, they both rely on an align- ment step to register the latent variables to some coordinate system and thus to facilitate the final inference. Numerical results are shown to validate all the pro- posed algorithms.
Medical imaging
adaptive data analysis
mode decomposition
non-parametric regression
signal processing
statistical learning
structural connectivity analysis

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Rights for Collection: Duke Dissertations
Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info