Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving Stability and Selectivity in Electrochemical Reduction of Carbon Dioxide in an Aqueous Solution

Thumbnail
View / Download
6.4 Mb
Date
2018
Author
Ji, Dong
Advisor
Liu, Jie
Repository Usage Stats
417
views
156
downloads
Abstract

With the rising level of CO2 in the atmosphere, methods capable of converting CO2 into useful fuels are urgently needed. The electrochemical CO2 reduction has gained significant interest recently due to its ability to use renewable energies. However, the poor stability of catalysts in electrochemical CO2 reduction limit its application in industry. Here we have developed a light-involving method to remove the surface carbonaceous species which are believed to poison the catalysts. By taking advantage of plasmonic properties of the copper catalyst, the stability of the catalysts has apparently improved.

Another problem in electrochemical CO2 reduction is the poor selectivity. One of the main reasons is the existence of the side reaction, hydrogen evolution reaction. Here we have developed a catalyst by dispersing atomic nickel on nitrogen-doped winged carbon nanotubes with the ability to suppress hydrogen evolution during CO2 reduction. The Faradaic Efficiency of CO reached 90% at -1.6 V vs. AgCl/Ag reference electrode while the efficiency of HER had been suppressed to less than 10% in the optimal reaction condition. By comparing with Ni NPs, the suppression of HER can be directly observed in LSV curve. It is suggested that this suppression may result from the lack of adjacent active sites for the Tafel mechanism in HER.

Type
Master's thesis
Department
Chemistry
Subject
Chemistry
Inorganic chemistry
Aqueous
Electrochemical Carbon Dioxide Reduction
Selectivity
Stability
Permalink
https://hdl.handle.net/10161/17532
Citation
Ji, Dong (2018). Improving Stability and Selectivity in Electrochemical Reduction of Carbon Dioxide in an Aqueous Solution. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/17532.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University