Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

RAD52 variants predict platinum resistance and prognosis of cervical cancer.

Thumbnail
View / Download
1.6 Mb
Date
2012-01
Authors
Shi, Ting-Yan
Yang, Gong
Tu, Xiao-Yu
Yang, Jing-Min
Qian, Ji
Wu, Xiao-Hua
Zhou, Xiao-Yan
Cheng, Xi
Wei, Qingyi
Show More
(9 total)
Repository Usage Stats
70
views
17
downloads
Abstract
RAD52 is an important but not well characterized homologous recombination repair gene that can bind to single-stranded DNA ends and mediate the DNA-DNA interaction necessary for the annealing of complementary DNA strands. To evaluate the role of RAD52 variants in the response of tumor cells to platinum agents, we investigated their associations with platinum resistance and prognosis in cervical cancer patients. We enrolled 154 patients with cervical squamous cell carcinoma, who had radical surgery between 2008 and 2009, and genotyped three potentially functional RAD52 variants by the SNaPshot assay. We tested in vitro platinum resistance and RAD52 expression by using the MTT and immunohistochemistry methods, respectively. In 144 cases who had genotyping data, we found that both the rs1051669 variant and RAD52 protein expression were significantly associated with carboplatin resistance (P = 0.024 and 0.028, respectively) and rs10774474 with nedaplatin resistance (P = 0.018). The rs1051669 variant was significantly associated with RAD52 protein expression (adjusted OR = 4.7, 95% CI = 1.4-16.1, P = 0.013). When these three RAD52 variants were combined, progression-free survival was lower in patients who carried at least one (≥1) variant allele compared to those without any of the variant alleles (P = 0.047). Therefore, both RAD52 variants and protein expression can predict platinum resistance, and RAD52 variants appeared to predict prognosis in cervical cancer patients. Large studies are warranted to validate these findings.
Type
Journal article
Subject
Humans
Organoplatinum Compounds
Carboplatin
Immunohistochemistry
Models, Statistical
Drug Resistance, Neoplasm
Genotype
Polymorphism, Single Nucleotide
Adult
Aged
Middle Aged
Uterine Cervical Neoplasms
Female
Rad52 DNA Repair and Recombination Protein
Young Adult
Permalink
https://hdl.handle.net/10161/17990
Published Version (Please cite this version)
10.1371/journal.pone.0050461
Publication Info
Shi, Ting-Yan; Yang, Gong; Tu, Xiao-Yu; Yang, Jing-Min; Qian, Ji; Wu, Xiao-Hua; ... Wei, Qingyi (2012). RAD52 variants predict platinum resistance and prognosis of cervical cancer. PloS one, 7(11). pp. e50461. 10.1371/journal.pone.0050461. Retrieved from https://hdl.handle.net/10161/17990.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Wei

Qingyi Wei

Professor in Population Health Sciences
Qingyi Wei, MD, PhD, Professor in the Department of Medicine, is Associate Director for Cancer Control and Population Sciences, Co-leader of CCPS and Co-leader of Epidemiology and Population Genomics (Focus Area 1). He is a professor of Medicine and an internationally recognized epidemiologist focused on the molecular and genetic epidemiology of head and neck cancers, lung cancer, and melanoma. His research focuses on biomarkers and genetic determinants for the DNA repair deficient phenotype and
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University