Genetic variants of GADD45A, GADD45B and MAPK14 predict platinum-based chemotherapy-induced toxicities in Chinese patients with non-small cell lung cancer.

Abstract

The JNK and P38α pathways play a crucial role in tissue homeostasis, apoptosis and autophagy under genotoxic stresses, but it is unclear whether single nucleotide polymorphisms (SNPs) of genes in these pathways play a role in platinum-based chemotherapy-induced toxicities in patients with advanced non-small cell lung cancer (NSCLC). We genotyped 11 selected, independent, potentially functional SNPs of nine genes in the JNK and P38α pathways in 689 patients with advanced NSCLC treated with platinum-combination chemotherapy regimens. Associations between these SNPs and chemotherapy toxicities were tested in a discovery group of 345 patients and then validated in a replication group of 344 patients. In both discovery and validation groups as well as their pooled analysis, carriers of GADD45B rs2024144T variant allele had a significantly higher risk for severe hematologic toxicity and carriers of MAPK14 rs3804451A variant allele had a significantly higher risk for both overall toxicity and gastrointestinal toxicity. In addition, carriers of GADD45A rs581000C had a lower risk of anemia, while carriers of GADD45B rs2024144T had a significantly higher risk for leukocytopenia or agranulocytosis. The present study provides evidence that genetic variants in genes involved in the JNK and P38α pathways may predict platinum-based chemotherapy toxicity outcomes in patients with advanced NSCLC. Larger studies of other patient populations are needed to validate our findings.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.18632/oncotarget.8052

Publication Info

Jia, Ming, Meiling Zhu, Mengyun Wang, Menghong Sun, Ji Qian, Fei Ding, Jianhua Chang, Qingyi Wei, et al. (2016). Genetic variants of GADD45A, GADD45B and MAPK14 predict platinum-based chemotherapy-induced toxicities in Chinese patients with non-small cell lung cancer. Oncotarget, 7(18). pp. 25291–25303. 10.18632/oncotarget.8052 Retrieved from https://hdl.handle.net/10161/18005.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Wei

Qingyi Wei

Professor in Population Health Sciences

Qingyi Wei, MD, PhD, Professor in the Department of Medicine, is Associate Director for Cancer Control and Population Sciences, Co-leader of CCPS and Co-leader of Epidemiology and Population Genomics (Focus Area 1). He is a professor of Medicine and an internationally recognized epidemiologist focused on the molecular and genetic epidemiology of head and neck cancers, lung cancer, and melanoma. His research focuses on biomarkers and genetic determinants for the DNA repair deficient phenotype and variations in cell death. He is Editor-in-Chief of the open access journal "Cancer Medicine" and Associate Editor-in-Chief of the International Journal of Molecular Epidemiology and Genetics.

Area of Expertise: Epidemiology


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.