Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Imaging at the Limits: Segmentation Error Bounds and High Resolution Retinal Imaging Systems

Thumbnail
View / Download
42.8 Mb
Date
2018
Author
DuBose, Theodore B
Advisors
Izatt, Joseph A
Farsiu, Sina
Repository Usage Stats
76
views
16
downloads
Abstract

The human retina is essential to quality of life and therefore a topic of intense clinical and research interest. The combination of this interest with modern biophotonics has yielded a number of technological and medical developments now in various stages of adoption.

Optical coherence tomography (OCT) is a noninvasive optical imaging technique that utilizes coherent light to produce 3-D images with resolutions as fine as a micrometer. Since its invention in 1990, it has become part of the standard of care in opthalmology, shedding new light on the progression of diseases, therapeutic efficacy, childhood development, and real-time surgery in the retina. OCT has also found applications in microscopy, cardiology, pulmonology, and many other fields.

OCT has become valuable for the standard of care primarily due to its abilities to visualize the structural and functional layers of the retina. The thicknesses and volumes of certain can be used as diagnostic criteria and thus there is a high demand of OCT image assessment. In response, many researchers have developed software algorithms to automatically identify and mark, or segment, each layer.

Scanning light ophthalmoscopy or scanning laser ophthalmoscopy (SLO) is similar to OCT but uses confocal gating to produce high-contrast high-speed en face images of the retina. Although SLO has not become as prevalent as OCT in the clinic, it is frequently combined with adaptive optics (AO) to produce extremely high-resolution images of rod and cone photoreceptors, ganglion cells, and moving blood cells in the living retina.

AO is a technique to eliminate image blurring due to monochromatic aberrations in optical systems. By using a spatial light modulator, such as a deformable mirror or liquid crystal array, the wavefront of a beam sent into the eye can be engineered to compensate for the eye's aberrations. AO-SLO was initially developed in 2002 and has continued to be a field of research growth and interest. However, the majority of AOSLO systems require a dedicated room and staff, hindering their clinical adoption

The objective of the work presented herein was to explore the limits of the above imaging modalities. First, we explored the limits of OCT segmentation and demonstrated that the field of automated segmentation is far from its accuracy limit. Second, we explored the limits on SLO portability and developed both the world's smallest SLO probe and the first handheld AOSLO probe. Finally, we explored the limits of SLO resolution, developing the first super-resolution human retinal imaging system through the use of optical reassignment (OR) SLO.

Description
Dissertation
Type
Dissertation
Department
Biomedical Engineering
Subject
Biomedical engineering
Optics
Ophthalmology
adaptive optics
cramer rao lower bound
optical coherence tomography
scanning light ophthalmoscopy
segmentation
super resolution
Permalink
https://hdl.handle.net/10161/18219
Citation
DuBose, Theodore B (2018). Imaging at the Limits: Segmentation Error Bounds and High Resolution Retinal Imaging Systems. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/18219.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University