Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Surface-enhanced Raman scattering nanosensors for in vivo detection of nucleic acid targets in a large animal model

Thumbnail
View / Download
2.6 Mb
Date
2018-08-01
Authors
Wang, HN
Register, JK
Fales, AM
Gandra, N
Cho, EH
Boico, A
Palmer, GM
Klitzman, B
Vo-Dinh, T
Show More
(9 total)
Repository Usage Stats
84
views
73
downloads
Abstract
© 2018, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature. Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo detection remains very challenging. Here, we demonstrated the proof-of-principle of in vivo detection of nucleic acid targets using a promising type of surface-enhanced Raman scattering (SERS) nanosensor implanted in the skin of a large animal model (pig). The in vivo nanosensor used in this study involves the “inverse molecular sentinel” detection scheme using plasmonics-active nanostars, which have tunable absorption bands in the near infrared region of the “tissue optical window”, rendering them efficient as an optical sensing platform for in vivo optical detection. Ex vivo measurements were also performed using human skin grafts to demonstrate the detection of SERS nanosensors through tissue. In this study, a new core–shell nanorattle probe with Raman reporters trapped between the core and shell was utilized as an internal standard system for self-calibration. These results illustrate the usefulness and translational potential of the SERS nanosensor for in vivo biosensing. [Figure not available: see fulltext.].
Type
Journal article
Subject
Science & Technology
Physical Sciences
Technology
Chemistry, Physical
Nanoscience & Nanotechnology
Materials Science, Multidisciplinary
Physics, Applied
Chemistry
Science & Technology - Other Topics
Materials Science
Physics
nanosensor
nanoprobes
plasmonics
nanostar
surface-enhanced Raman scattering (SERS)
in vivo sensing
PHASE-CHANGE MATERIALS
COATED GOLD NANOSTARS
SERS DETECTION
CANCER-DETECTION
CONTROLLED-RELEASE
NANOPROBES
SPECTROSCOPY
BIOMARKERS
THERAPY
DNA
Permalink
https://hdl.handle.net/10161/18477
Published Version (Please cite this version)
10.1007/s12274-018-1982-3
Publication Info
Wang, HN; Register, JK; Fales, AM; Gandra, N; Cho, EH; Boico, A; ... Vo-Dinh, T (2018). Surface-enhanced Raman scattering nanosensors for in vivo detection of nucleic acid targets in a large animal model. Nano Research, 11(8). pp. 4005-4016. 10.1007/s12274-018-1982-3. Retrieved from https://hdl.handle.net/10161/18477.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Klitzman

Bruce Klitzman

Associate Professor Emeritus in Surgery
Our overriding interests are in the fields of tissue engineering, wound healing, biosensors, and long term improvement of medical device implantation. My basic research interests are in the area of physiological mechanisms of optimizing substrate transport to tissue. This broad topic covers studies on a whole animal, whole organ, hemorheological, microvascular, cellular, ultrastructural, and molecular level. The current projects include: 1) control of blood flow and flow distribu
Palmer

Gregory M. Palmer

Associate Professor of Radiation Oncology
Greg Palmer obtained his B.S. in Biomedical Engineering from Marquette University in 2000, after which he obtained his Ph.D. in BME from the University of Wisconsin, Madison. He is currently an Associate Professor in the Department of Radiation Oncology, Cancer Biology Division at Duke University Medical Center. His primary research focus has been identifying and exploiting the changes in absorption, scattering, and fluorescence properties of tissue associated with cancer progression and therape
Vo-Dinh

Tuan Vo-Dinh

R. Eugene and Susie E. Goodson Distinguished Professor of Biomedical Engineering
Dr. Tuan Vo-Dinh is R. Eugene and Susie E. Goodson Distinguished Professor of Biomedical Engineering, Professor of Chemistry, and Director of The Fitzpatrick Institute for Photonics. Dr. Vo-Dinh’s research activities and interests involve biophotonics, nanophotonics, plasmonics, laser-excited luminescence spectroscopy, room temperature phosphorimetry, synchronous luminescence spectroscopy, and surface-enhanced Raman spectroscopy for multi-modality bioimaging, and theranostics (d
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Related items

Showing items related by title, author, creator, and subject.

  • Thumbnail

    Evaluating the best available social science for natural resource management decision-making 

    Charnley, S; Carothers, C; Satterfield, T; Levine, A; Poe, MR; Norman, K; Donatuto, J; ... (14 authors) (Environmental Science and Policy, 2017-07-01)
    © 2017 Increasing recognition of the human dimensions of natural resource management issues, and of social and ecological sustainability and resilience as being inter-related, highlights the importance of applying social ...
  • Thumbnail

    The Anthropocene: A conspicuous stratigraphical signal of anthropogenic changes in production and consumption across the biosphere 

    Williams, M; Zalasiewicz, J; Waters, CN; Edgeworth, M; Bennett, C; Barnosky, AD; Ellis, EC; ... (25 authors) (Earth's Future, 2016-03-01)
    © 2016 The Authors. Biospheric relationships between production and consumption of biomass have been resilient to changes in the Earth system over billions of years. This relationship has increased in its complexity, from ...
  • Thumbnail

    Topographic variability and the influence of soil erosion on the carbon cycle 

    Dialynas, YG; Bastola, S; Bras, RL; Billings, SA; Markewitz, D; Richter, DDB (Global Biogeochemical Cycles, 2016-05-01)
    ©2016. American Geophysical Union. All Rights Reserved. Soil erosion, particularly that caused by agriculture, is closely linked to the global carbon (C) cycle. There is a wide range of contrasting global estimates of how ...

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University