Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

"Modeling and Forecasting Realized Volatility"

View / Download
956.2 Kb
Date
2003
Authors
Andersen, TG
Bollerslev, T
Diebold, FX
Labys, P
Repository Usage Stats
586
views
428
downloads
Abstract
We provide a general framework for integration of high-frequency intraday data into the measurement, modeling, and forecasting of daily and lower frequency return volatilities and return distributions. Most procedures for modeling and forecasting financial asset return volatilities, correlations, and distributions rely on potentially restrictive and complicated parametric multivariate ARCH or stochastic volatility models. Use of realized volatility constructed from high-frequency intraday returns, in contrast, permits the use of traditional time-series methods for modeling and forecasting. Building on the theory of continuous-time arbitrage-free price processes and the theory of quadratic variation, we develop formal links between realized volatility and the conditional covariance matrix. Next, using continuously recorded observations for the Deutschemark / Dollar and Yen / Dollar spot exchange rates covering more than a decade, we find that forecasts from a simple long-memory Gaussian vector autoregression for the logarithmic daily realized volatilities perform admirably compared to a variety of popular daily ARCH and more complicated high-frequency models. Moreover, the vector autoregressive volatility forecast, coupled with a parametric lognormal-normal mixture distribution implied by the theoretically and empirically grounded assumption of normally distributed standardized returns, produces well-calibrated density forecasts of future returns, and correspondingly accurate quantile predictions. Our results hold promise for practical modeling and forecasting of the large covariance matrices relevant in asset pricing, asset allocation and financial risk management applications.
Type
Journal article
Subject
Continuous time methods
Density forecasting
Long memory
Quadratic variation
Risk management
Volatiltiy forecasting
Permalink
https://hdl.handle.net/10161/1859
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Bollerslev

Tim Bollerslev

Juanita and Clifton Kreps Distinguished Professor of Economics, in Trinity College of Arts and Sciences
Professor Bollerslev conducts research in the areas of time-series econometrics, financial econometrics, and empirical asset pricing finance. He is particularly well known for his developments of econometric models and procedures for analyzing and forecasting financial market volatility. Much of Bollerslev’s recent research has focused on the analysis of newly available high-frequency intraday, or tick-by-tick, financial data and so-called realized volatility measures, macroeconomic news annou
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University