Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism.

Thumbnail
View / Download
1.0 Mb
Date
2011-08-26
Authors
Allen, Kyle D
Shamji, Mohammed F
Mata, Brian A
Gabr, Mostafa A
Sinclair, S Michael
Schmitt, Daniel O
Richardson, William J
Setton, Lori A
Show More
(8 total)
Repository Usage Stats
74
views
17
downloads
Abstract
Tumor necrosis factor-α (TNFα) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Prior studies have demonstrated that TNF antagonists can attenuate heightened nociception resulting from lumbar radiculopathy in the preclinical model. Less is known about the potential impact of TNF antagonism on gait compensations, despite being of clinical relevance. In this study, we expand on previous descriptions of gait compensations resulting from lumbar radiculopathy in the rat and describe the ability of local TNF antagonism to prevent the development of gait compensations, altered weight bearing, and heightened nociception.Eighteen male Sprague-Dawley rats were investigated for mechanical sensitivity, weight-bearing, and gait pre- and post-operatively. For surgery, tail nucleus pulposus (NP) tissue was collected and the right L5 dorsal root ganglion (DRG) was exposed (Day 0). In sham animals, NP tissue was discarded (n = 6); for experimental animals, autologous NP was placed on the DRG with or without 20 μg of soluble TNF receptor type II (sTNFRII, n = 6 per group). Spatiotemporal gait characteristics (open arena) and mechanical sensitivity (von Frey filaments) were assessed on post-operative Day 5; gait dynamics (force plate arena) and weight-bearing (incapacitance meter) were assessed on post-operative Day 6.High-speed gait characterization revealed animals with NP alone had a 5% decrease in stance time on their affected limbs on Day 5 (P ≤0.032). Ground reaction force analysis on Day 6 aligned with temporal changes observed on Day 5, with vertical impulse reduced in the affected limb of animals with NP alone (area under the vertical force-time curve, P <0.02). Concordant with gait, animals with NP alone also had some evidence of affected limb mechanical allodynia on Day 5 (P = 0.08) and reduced weight-bearing on the affected limb on Day 6 (P <0.05). Delivery of sTNFRII at the time of NP placement ameliorated signs of mechanical hypersensitivity, imbalanced weight distribution, and gait compensations (P <0.1).Our data indicate gait characterization has value for describing early limb dysfunctions in pre-clinical models of lumbar radiculopathy. Furthermore, TNF antagonism prevented the development of gait compensations subsequent to lumbar radiculopathy in our model.
Type
Journal article
Subject
Lumbosacral Region
Animals
Rats
Rats, Sprague-Dawley
Gait Disorders, Neurologic
Hyperalgesia
Radiculopathy
Disease Models, Animal
Tumor Necrosis Factor-alpha
Receptors, Tumor Necrosis Factor, Type II
Gait
Adaptation, Physiological
Weight-Bearing
Male
Biomechanical Phenomena
Permalink
https://hdl.handle.net/10161/18593
Published Version (Please cite this version)
10.1186/ar3451
Publication Info
Allen, Kyle D; Shamji, Mohammed F; Mata, Brian A; Gabr, Mostafa A; Sinclair, S Michael; Schmitt, Daniel O; ... Setton, Lori A (2011). Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism. Arthritis research & therapy, 13(4). pp. R137. 10.1186/ar3451. Retrieved from https://hdl.handle.net/10161/18593.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Gabr

Mostafa Gabr

Research Associate, Senior
Dr. Gabr's research has specifically focused on the following broad areas: (i) animal model of myelopathy, (ii) participating in clinical trials in spine field.In the last few years, this research agenda has expanded to include collaborative projects and publications. Dr. Gabr and his colleagues explore benefit of cervical collar following spine fusion, spinal cord injury model, and transforaminal lumbar interbody fusion.Dr. Gabr is the author of "Interleukin-17 synergizes with IFNI&
Schmitt

Daniel Oliver Schmitt

Professor in the Department of Evolutionary Anthropology
My primary interest is in the evolution of primate locomotion. I am studying the mechanics of movement in primates and other vertebrates in the laboratory to understand the relationship between movement and postcranial morphology, and the unique nature of primates among mammals. Current projects include the origins of primate locomotion and the evolution of vertebrate bipedalism.

Lori A. Setton

Adjunct Professor of Biomedical Engineering
Research in Setton's laboratory is focused on the role of mechanical factors in the degeneration and repair of soft tissues of the musculoskeletal system, including the intervertebral disc, articular cartilage and meniscus. Work in the Laboratory is focused on engineering and evaluating materials for tissue regeneration and drug delivery. Studies combining engineering and biology are also used to determine the role of mechanical factors to promote and control healing of cartilaginous tissues. Re
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University