Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-driven investigations of disgust

Thumbnail
View / Download
2.0 Mb
Date
2019
Author
Hanna, Eleanor
Advisors
LaBar, Kevin S
Sinnott-Armstrong, Walter
Repository Usage Stats
159
views
110
downloads
Abstract

Disgust features prominently in many facets of human life, from dining etiquette to spider phobia to genocide. For some applications, such as public health campaigns, it might be desirable to know how to increase disgust, whereas for things like legal and political decision-making it might be desirable to know how to suppress disgust. However, interventions in neither direction can take place until the basic structure of disgust is better understood. Disgust is notoriously difficult to model, largely due to the fact that it is a highly individually variable, multifactorial construct, with a great breadth of eliciting stimuli and contexts. As such, many of the theories which attempt to comprehensively describe disgust come into conflict with each other, impeding progress towards more efficient and effective ways of predicting disgust-related outcomes. The aim of this dissertation is to explore the possible contribution of data-driven methods to resolving theoretical questions, evaluating extant theories, and the generation of novel conceptual structures from bottom-up insights. Data were collected to sample subjective experience as well as psychophysiological reactivity. Through the use of techniques such as factor analysis and support vector machine classification, several insights about the approaching the study of disgust emerged. In one study, results indicated that the level of abstraction across subdivisions of disgust is not necessarily constant, in spite of a priori theoretical expectations: in other words, some domains of disgust are more general than others, and recognizing as much will improve the predictive validity of a model. Another study highlighted the importance of recognizing one particular category of disgust elicitors (mutilation) as a separate entity from the superordinate domains into which extant theories placed it. Finally, another study investigated the influence of concurrent emotions on variability in disgust physiology, and demonstrated the difference in the representations of the structure of disgust between the level of subjective experience and the level of autonomic activity. In total, the studies conducted as part of this dissertation suggest that for constructs as complex as disgust, data-driven approaches investigations can be a boon to scientists looking to evaluate the quality of the theoretical tools at their disposal.

Description
Dissertation
Type
Dissertation
Department
Psychology and Neuroscience
Subject
Cognitive psychology
Disgust
Emotion
Factor analysis
Machine learning
Model comparison
Permalink
https://hdl.handle.net/10161/18723
Citation
Hanna, Eleanor (2019). Data-driven investigations of disgust. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/18723.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University