Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detection of Dengue, Chikungunya, and Zika Viruses Among Patients in Sarawak, Malaysia by a Novel Multiplexing Platform

Thumbnail
View / Download
475.0 Kb
Date
2019
Author
Zemke, Juliana Nash
Advisor
Gray, Gregory C
Repository Usage Stats
279
views
261
downloads
Abstract

Introduction: According to the World Health Organization (WHO), 500 million arbovirus cases are diagnosed around the world annually, with 2.7 million associated deaths [1]. The burden of disease caused by dengue, chikungunya, and Zika viruses is likely to be underestimated due to a lack of accurate diagnostic tools and knowledge gaps regarding their epidemiology [2, 3]. This thesis uses a subset of data from an on-going 24-month study to evaluate the potential etiology of dengue-like symptoms of patients recruited from medical facilities in Sarawak, Malaysia. A secondary aim is to assess the diagnostic clinical effectiveness of a new detection method, the novel T-Cor 8 Multiplexing Platform (Tetracore, Inc., USA), using qRT-PCR assays as the gold standard method for comparison. The prevalence of arboviral infections as determined by gold-standard qRT-PCR assays and potential risk factors in the study population were also analysed.

Methods: In this cross-sectional study, patients more than seven years of age with dengue-like symptoms were enrolled at medical facilities in the towns of Sibu and Kapit in Sarawak, Malaysia. Blood, urine, and gingival crevicular fluid samples, as well as risk factor data, were collected from participants at the time of enrolment. These samples were studied by qRT-PCR assays and the novel T-Cor 8 Multiplexing Platform.

Results: Seven (14%) of 51 participants’ serum RNA samples tested positive for arbovirus infection by gold-standard qRT-PCR assays. Two participants (4%) were positive for dengue subtype-1, four participants (8%) were positive for dengue subtype-2, and one participant (2%) was positive for dengue subtype-4. No patient samples had molecular evidence of chikungunya or Zika viruses. The T-Cor 8 multiplexing platform demonstrated a 71% sensitivity (95% confidence interval 29-96%), 93% specificity (95% confidence interval 81-99%), and 90% accuracy (95% confidence interval 78-97%) compared to the gold-standard assays on serum RNA samples. From this subset of data, we failed to identify important risk factors for arboviral infection.

Conclusion: From this limited subset of data, we conclude that the T-Cor 8 platform’s simplicity and accuracy in detecting at least dengue virus infections has considerable potential for clinical usefulness in low-resource settings.

Description
Master's thesis
Type
Master's thesis
Department
Global Health
Subject
Public health
Arbovirus
Dengue
Diagnostics
Malaysia
Permalink
https://hdl.handle.net/10161/18844
Citation
Zemke, Juliana Nash (2019). Detection of Dengue, Chikungunya, and Zika Viruses Among Patients in Sarawak, Malaysia by a Novel Multiplexing Platform. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/18844.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University