Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Knowledge-Based Models to Teach Complex Lung IMRT Planning

Thumbnail
View / Download
2.2 Mb
Date
2019
Author
Mistro, Matthew
Advisor
Wu, Jackie
Repository Usage Stats
161
views
36
downloads
Abstract

Knowledge-based treatment planning models are commonly built from straightforward principles and utilize experience that it is able to learn from previous high-quality plans. This knowledge can be harnessed by having an e-learning system incorporating knowledge-based treatment planning models to serve as informative, efficient bases to train individuals to develop IMRT plans for a particular site while building confidence in utilizing these models in a clinical setting.

A previously developed beam angle selection model and a previously developed DVH prediction model for lung/mediastinum IMRT planning are used as the information centers within a directed e-learning system guided by scoring criteria and communicated with the trainees via a user interface ran from the treatment planning system (Eclipse). The scoring system serves both to illustrate relative quality of plans and to serve as a guide to facilitate directed changes within the plan. One patient serves as a benchmark to show skill development from the e-learning system and is completed without intervention. Five additional lung/mediastinum patients follow in the subsequent training pipeline where the models, graphical user interface (GUI) and trainer work with trainee’s directives and guide meaningful beam selection and tradeoffs within IMRT optimization. Five trainees with minimal treatment planning background were evaluated by both the scoring criteria and a physician to look for improved planning quality and relative effectiveness against the clinically delivered plan.

Trainees scored an average of 22.7% of the total points within the scoring criteria for their benchmark yet improved to an average of 51.9% compared to the clinically delivered plan which achieved 54.1% of the total potential points. Two of the five trainee final plans were rated as comparable to the clinically delivered by a physician and all five were noticeably improved by the physicians standards. For plans within the system, trainees performed on average 24.5% better than the clinically delivered plan with respect to the scoring criteria.

This first attempt at creating a dynamic interface communicating prior experience built in models to an end-user was approximately 10 hours to rapidly improve planning quality. It brings unexperienced planners to a level comparable of experienced dosimetrists for a specific treatment site and when used to inform decisions, the knowledge-based models aided in producing high quality plans.

Description
Master's thesis
Type
Master's thesis
Department
Medical Physics
Subject
Information science
e-learning system
knowledge-base models
machine learning
treatment planning
Permalink
https://hdl.handle.net/10161/18870
Citation
Mistro, Matthew (2019). Using Knowledge-Based Models to Teach Complex Lung IMRT Planning. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/18870.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University