Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A High-Tech Solution for the Low Resource Setting: A Tool to Support Decision Making for Patients with Traumatic Brain Injury

Thumbnail
View / Download
2.0 Mb
Date
2019
Author
Elahi, Cyrus
Advisor
Haglund, Michael
Repository Usage Stats
165
views
28
downloads
Abstract

Background. The confluence of a capacity-exceeding disease burden and persistent resource shortages have resulted in traumatic brain injury’s (TBI) devastating impact in low and middle income countries (LMIC). Lifesaving care for TBI depends on accurate and timely decision making within the hospital. As result of technology and highly skilled provider shortages, treatment delays are common in low resource settings. This reality demands a low cost, scalable and accurate alternative to support decision making. Decision support tools leveraging the accuracy of modern prognostic modeling techniques represents one possible solution. This thesis is a collation of research dedicated to the advancement of TBI decision support technology in low resource settings. Methods. The study location included three national and referral hospitals in Uganda and Tanzania. We performed a survival analysis, externally validated existing TBI prognostic models, developed our own prognostic model, and performed a feasibility study for TBI decision support tools in an LMIC. Results. The survival analysis revealed a greater surgical benefit for mild and moderate head injuries compared to severe injuries. However, severe injury patients experienced a higher surgery rate than mild and moderate injuries. We developed a prognostic model using machine learning with a good level of accuracy. This model outperformed existing TBI models in regards to discrimination but not calibration. Our feasibility study captured the need for improved prognostication of TBI patients in the hospital. Conclusions. This pioneering work has provided a foundation for further investigation and implementation of TBI decision support technologies in low resource settings.

Description
Master's thesis
Type
Master's thesis
Department
DKU- Global Health Master of Science Program
Subject
Medicine
Statistics
Surgery
decision support
east africa
machine learning
prognosis
traumatic brain injury
uganda
Permalink
https://hdl.handle.net/10161/18879
Citation
Elahi, Cyrus (2019). A High-Tech Solution for the Low Resource Setting: A Tool to Support Decision Making for Patients with Traumatic Brain Injury. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/18879.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University