Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single Image Super Resolution:Perceptual quality & Test-time Optimization

Thumbnail
View / Download
6.6 Mb
Date
2019
Author
Chen, Lei
Advisor
Rudin, Cynthia
Repository Usage Stats
369
views
717
downloads
Abstract

Image super resolution is defined as recovering a high-resolution image given a low-resolution image input. It has a wide area of applications in modern digital image processing, producing better results in areas including satellite image processing, medical image processing, microscopy image processing, astrological studies and surveillance area. However, image super resolution is an ill-posed question since there exists non-deterministic answer in the high resolution image space, making it difficult to find the optimal solution.

In this work, various research directions in the area of single image super resolution are thoroughly studied. Each of the proposed methods' achievements as well as limitations including computational efficiency, perceptual performance limits are compared. The main contribution in this work including implementing a perceptual score predictor and integrating as part of the objective function in the upsampler algorithm. Apart from that, a test-time optimization algorithm is proposed, aiming at further enhance the image quality for the obtained super-resolution image from any upsampler. The proposed methods are implemented and tested using Pytorch. Results are compared on baseline applied datasets including Set5, Set14, Urban100 and DIV2K.

Results from perceptual score predictor was evaluated on both PSNR precision index and perceptual index, which is a combination of perceptual evaluation Ma score and NIQE score. With new objective function, the upsampler achieved to move along the trade-off curve of precision and perception. The test-time optimization algorithm achieved slightly improvements in both precision and perception index. Note that the proposed test time optimization does not require training of new neural network, thus, is computationally efficient.

Description
Master's thesis
Type
Master's thesis
Department
Electrical and Computer Engineering
Subject
Computer engineering
Information technology
Computer Vision
Deep Neural Networks
Objective Function
Perceptual Quality
Pixel Shift
Super Resolution
Permalink
https://hdl.handle.net/10161/18928
Citation
Chen, Lei (2019). Single Image Super Resolution:Perceptual quality & Test-time Optimization. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/18928.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University