Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of dosimetric uncertainty caused by MR geometric distortion in MRI-based liver SBRT treatment planning.

Thumbnail
View / Download
637.4 Kb
Date
2019-02
Authors
Han, Silu
Yin, Fang-Fang
Cai, Jing
Repository Usage Stats
101
views
22
downloads
Abstract
PURPOSE:MRI-based treatment planning is a promising technique for liver stereotactic-body radiation therapy (SBRT) treatment planning to improve target volume delineation and reduce radiation dose to normal tissues. MR geometric distortion, however, is a source of potential error in MRI-based treatment planning. The aim of this study is to investigate dosimetric uncertainties caused by MRI geometric distortion in MRI-based treatment planning for liver SBRT. MATERIALS AND METHODS:The study was conducted using computer simulations. 3D MR geometric distortion was simulated using measured data in the literature. Planning MR images with distortions were generated by integrating the simulated 3D MR geometric distortion onto planning CT images. MRI-based treatment plans were then generated on the planning MR images with two dose calculation methods: (1) using original CT numbers; and (2) using organ-specific assigned CT numbers. Dosimetric uncertainties of various dose-volume-histogram parameters were determined as their differences between the simulated MRI-based plans and the original clinical CT-based plans for five liver SBRT cases. RESULTS:The average simulated distortion for the five liver SBRT cases was 2.77 mm. In the case of using original CT numbers for dose calculation, the average dose uncertainties for target volumes and critical structures were <0.5 Gy, and the average target volume percentage at prescription dose uncertainties was 0.97%. In the case of using assigned CT numbers, the average dose uncertainties for target volumes and critical structures were <1.0 Gy, and the average target volume percentage at prescription dose uncertainties was 2.02%. CONCLUSIONS:Dosimetric uncertainties caused by MR geometric distortion in MRI-based liver SBRT treatment planning was generally small (<1 Gy) when the distortion is 3 mm.
Type
Journal article
Subject
Humans
Liver Neoplasms
Magnetic Resonance Imaging
Radiosurgery
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted
Uncertainty
Phantoms, Imaging
Image Processing, Computer-Assisted
Radiotherapy, Intensity-Modulated
Organs at Risk
Permalink
https://hdl.handle.net/10161/19371
Published Version (Please cite this version)
10.1002/acm2.12520
Publication Info
Han, Silu; Yin, Fang-Fang; & Cai, Jing (2019). Evaluation of dosimetric uncertainty caused by MR geometric distortion in MRI-based liver SBRT treatment planning. Journal of applied clinical medical physics, 20(2). pp. 43-50. 10.1002/acm2.12520. Retrieved from https://hdl.handle.net/10161/19371.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Cai

Jing Cai

Adjunct Associate Professor in the Radiation Oncology
Image-guided Radiation Therapy (IGRT), Magnetic Resonance Imaging (MRI), Tumor Motion Management, Four-Dimensional Radiation Therapy (4DRT), Stereotatic-Body Radiation Therapy (SBRT), Brachytherapy, Treatment Planning, Lung Cancer, Liver Cancer, Cervical Cancer.
Yin

Fang-Fang Yin

Gustavo S. Montana Distinguished Professor of Radiation Oncology
Stereotactic radiosurgery, Stereotactic body radiation therapy, treatment planning optimization, knowledge guided radiation therapy, intensity-modulated radiation therapy, image-guided radiation therapy, oncological imaging and informatics
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University