Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of integrated respiratory gating systems on a Novalis Tx system.

Thumbnail
View / Download
2.1 Mb
Date
2011-04-04
Authors
Chang, Zheng
Liu, Tonghai
Cai, Jing
Chen, Qing
Wang, Zhiheng
Yin, Fang-Fang
Repository Usage Stats
91
views
22
downloads
Abstract
The purpose of this study was to investigate the accuracy of motion tracking and radiation delivery control of integrated gating systems on a Novalis Tx system. The study was performed on a Novalis Tx system, which is equipped with Varian Real-time Position Management (RPM) system, and BrainLAB ExacTrac gating systems. In this study, the two systems were assessed on accuracy of both motion tracking and radiation delivery control. To evaluate motion tracking, two artificial motion profiles and five patients' respiratory profiles were used. The motion trajectories acquired by the two gating systems were compared against the references. To assess radiation delivery control, time delays were measured using a single-exposure method. More specifically, radiation is delivered with a 4 mm diameter cone within the phase range of 10%-45% for the BrainLAB ExacTrac system, and within the phase range of 0%-25% for the Varian RPM system during expiration, each for three times. Radiochromic films were used to record the radiation exposures and to calculate the time delays. In the work, the discrepancies were quantified using the parameters of mean and standard deviation (SD). Pearson's product-moment correlational analysis was used to test correlation of the data, which is quantified using a parameter of r. The trajectory profiles acquired by the gating systems show good agreement with those reference profiles. A quantitative analysis shows that the average mean discrepancies between BrainLAB ExacTrac system and known references are 1.5 mm and 1.9 mm for artificial and patient profiles, with the maximum motion amplitude of 28.0 mm. As for the Varian RPM system, the corresponding average mean discrepancies are 1.1 mm and 1.7 mm for artificial and patient profiles. With the proposed single-exposure method, the time delays are found to be 0.20 ± 0.03 seconds and 0.09 ± 0.01 seconds for BrainLAB ExacTrac and Varian RPM systems, respectively. The results indicate the systems can track motion and control radiation delivery with reasonable accuracy. The proposed single-exposure method has been demonstrated to be feasible in measuring time delay efficiently.
Type
Journal article
Subject
Abdomen
Humans
Radiographic Image Interpretation, Computer-Assisted
Linear Models
Phantoms, Imaging
Respiratory Mechanics
Algorithms
Motion
Time Factors
Radiotherapy, Intensity-Modulated
Respiratory-Gated Imaging Techniques
Permalink
https://hdl.handle.net/10161/19375
Published Version (Please cite this version)
10.1120/jacmp.v12i3.3495
Publication Info
Chang, Zheng; Liu, Tonghai; Cai, Jing; Chen, Qing; Wang, Zhiheng; & Yin, Fang-Fang (2011). Evaluation of integrated respiratory gating systems on a Novalis Tx system. Journal of applied clinical medical physics, 12(3). pp. 3495. 10.1120/jacmp.v12i3.3495. Retrieved from https://hdl.handle.net/10161/19375.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Cai

Jing Cai

Adjunct Associate Professor in the Radiation Oncology
Image-guided Radiation Therapy (IGRT), Magnetic Resonance Imaging (MRI), Tumor Motion Management, Four-Dimensional Radiation Therapy (4DRT), Stereotatic-Body Radiation Therapy (SBRT), Brachytherapy, Treatment Planning, Lung Cancer, Liver Cancer, Cervical Cancer.
Chang

Zheng Chang

Professor of Radiation Oncology
Dr. Chang's research interests include radiation therapy treatment assessment using MR quantitative imaging, image guided radiation therapy (IGRT), fast MR imaging using parallel imaging and strategic phase encoding, and motion management for IGRT.
Wang

Zhiheng Wang

Professor of Radiation Oncology
Yin

Fang-Fang Yin

Gustavo S. Montana Distinguished Professor of Radiation Oncology
Stereotactic radiosurgery, Stereotactic body radiation therapy, treatment planning optimization, knowledge guided radiation therapy, intensity-modulated radiation therapy, image-guided radiation therapy, oncological imaging and informatics
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University