Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The application of distance transformation on parameter optimization of inverse planning in intensity-modulated radiation therapy.

Thumbnail
View / Download
2.1 Mb
Date
2008-04-16
Authors
Yan, Hui
Yin, Fang-Fang
Repository Usage Stats
205
views
14
downloads
Abstract
In inverse planning for intensity-modulated radiation therapy (IMRT), the dose specification and related weighting factor of an objective function for involved organs is usually predefined by a single value and then iteratively optimized, subject to a set of dose-volume constraints. Because the actual dose distribution is essentially non-uniform and considerably affected by the geometric shape and distribution of the anatomic structures involved, the spatial information regarding those structures should be incorporated such that the predefined parameter distribution is made to approach the clinically expected distribution. Ideally, these parameter distributions should be predefined on a voxel basis in a manual method. However, such an approach is too time-consuming to be feasible in routine use. In the present study, we developed a computer-aided method to achieve the goal described above, producing a non-uniform parameter distribution based on spatial information about the anatomic structures involved. The method consists of two steps: Use distance transformation technique to calculate the distance distribution of the structures. Based on the distance distribution, produce the parameter distribution via a function guided by prior knowledge. We use two simulated cases to examine the effectiveness of the method. The results indicate that application of a non-uniform parameter distribution produced by distance transformation clearly improves dose-sparing of critical organs without compromising dose coverage of the planning target.
Type
Journal article
Subject
Radiotherapy Planning, Computer-Assisted
Algorithms
Radiotherapy, Intensity-Modulated
Permalink
https://hdl.handle.net/10161/19395
Published Version (Please cite this version)
10.1120/jacmp.v9i2.2750
Publication Info
Yan, Hui; & Yin, Fang-Fang (2008). The application of distance transformation on parameter optimization of inverse planning in intensity-modulated radiation therapy. Journal of applied clinical medical physics, 9(2). pp. 2750. 10.1120/jacmp.v9i2.2750. Retrieved from https://hdl.handle.net/10161/19395.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Yin

Fang-Fang Yin

Gustavo S. Montana Distinguished Professor of Radiation Oncology
Stereotactic radiosurgery, Stereotactic body radiation therapy, treatment planning optimization, knowledge guided radiation therapy, intensity-modulated radiation therapy, image-guided radiation therapy, oncological imaging and informatics
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University