Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optical Precursor Behavior

Thumbnail
View / Download
3.5 Mb
Date
2007-05-07
Author
LeFew, William R.
Advisors
Venakides, Stephanos
Trangenstein, John
Mattingly, Jonathan
Witelski, Thomas P.
Repository Usage Stats
424
views
717
downloads
Abstract
Controlling and understanding the propagation of optical pulses through dispersive media forms the basis for optical communication, medical imaging, and other modern technological advances. Integral to this control and understanding is the ability to describe the transients which occur immediately after the onset of a signal. This thesis examines the transients of such a system when a unit step function is applied. The electromagnetic field is described by an integral resulting from Maxwell’s Equations. It was previously believed that optical precursors, a specific transient effect, existed only for only a few optical cycles and contributed only small magnitudes to the field. The main results of this thesis show that the transients arising from this integral are entirely precursors and that they may exist on longer time scales and contribute larger magnitudes to the field. The experimental detection of precursors has previously been recognized only through success comparison to the transient field resulting from an application of the method of steepest descent to that field integral. For any parameter regime where steepest descents may be applied, this work gives iterative methods to determine saddle points which are both more accurate than the accepted results and to extend into regimes where the current theory has failed. Furthermore, asymptotic formulae have been derived for regions where previous attempts at steepest descent have failed. Theory is also presented which evaluates the applicability of steepest descents in the represention of precursor behavior for any set of parameters. Lastly, the existence of other theoretical models for precursor behavior who may operate beyond the reach of steepest descent is validated through successful comparisons of the transient prediction of those methods to the steepest descent based results of this work.
Type
Dissertation
Department
Mathematics
Subject
Maxwell equations
Mathematics
Permalink
https://hdl.handle.net/10161/195
Citation
LeFew, William R. (2007). Optical Precursor Behavior. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/195.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University