Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Research and Writings
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Research and Writings
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Total risk index: a mathematical model for decision making based on clinical and radiation risk assessment in CT

Thumbnail
View / Download
408.1 Kb
Date
2019-12-04
Authors
Ria, Francesco
Smith, Taylor
Hoye, Jocelyn
Marin, Daniele
Samei, Ehsan
Repository Usage Stats
130
views
18
downloads
Abstract
Purpose. Radiological risk is a combination of radiation and clinical risk (likelihood of not delivering a proper diagnosis), which together may be characterized as a total risk index (TRI). While many strategies have been developed to ascertain radiation risk, there has been a paucity of studies assessing the clinical risk. This knowledge gap makes impossible to determine the total radiological procedure risk and, thus, to perform a comprehensive optimization. The purpose of this study was to develop a mathematical model to ascertain TRI and to identify the minimum TRI (mTRI) in a clinical CT population. Materials and Methods. This IRB approved study included 21 adults abdomen exams performed on a dual-source single energy CT at two different dose levels (84 CT series). Virtual liver lesions were inserted into projection data to simulate localized stage liver cancer (LSLC). The detectability index (d') was calculated in each series and converted to percentage of correct observer answers (AUC) in a two-alternative forced-choice model. The AUC was converted into the loss of 5-year relative survival rate (SEER, NCI), considering an upper bound on patient's risk for a misdiagnosis of LSLC (false positive + false negative). Concerning radiation risk, organ doses were estimated using a Monte Carlo method and the Risk Index was calculated and converted in 5-year relative survival rate for cancer. Finally, the two risks were weighted equally into a combined TRI curve per each patient as a function of CTDIvol. The analytical minimum of each TRI curve provided the patient mTRI. Results. The mTRI for LSLC patients that underwent an abdominal CT exhibited a rapid rise at low radiation dose due to enhanced clinical risk of under-dosed examinations. Increasing dose offered less risk with mortality per 100 patients between 2.1 and 6.5 (mean 4.5) at CTDIvol=5mGy, between 1.1 and 5.9 (mean 3.5) at CTDIvol=10mGy and between 0.5 and 5.4 (mean 3.0) at CTDIvol=20 mGy. Conclusion. The clinical risk seems to play a more dominant factor in designing optimum CT protocols. The TRI may provide an objective and quantifiable metric of the interplay of radiation and clinical risks during the optimization of the CT technique for individual patients. Clinical Relevance statement. CT risk-based optimization can be made possible by first quantifying both radiation and clinical risk using comparable units, then calculating an overall risk, and finally minimizing the total risk.
Type
Conference
Permalink
https://hdl.handle.net/10161/19570
Collections
  • Research and Writings
More Info
Show full item record

Scholars@Duke

Ria

Francesco Ria

Research Associate, Senior
Samei

Ehsan Samei

Reed and Martha Rice Distinguished Professor of Radiology
Dr. Ehsan Samei, PhD, DABR, FAAPM, FSPIE, FAIMBE, FIOMP, FACR is a Persian-American medical physicist. He is a tenured Professor of Radiology, Medical Physics, Biomedical Engineering, Physics, and Electrical and Computer Engineering at Duke University, where he also serves as the Chief Imaging Physicist for Duke University Health System, the director of the Carl E Ravin Advanced Imaging Laboratories, and the director of Center for Virtual Imaging Trials. He is certi
Alphabetical list of authors with Scholars@Duke profiles.

Material is made available in this collection at the direction of authors according to their understanding of their rights in that material. You may download and use these materials in any manner not prohibited by copyright or other applicable law.

Rights for Collection: Research and Writings


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University