Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Observation of Majorana quantum critical behaviour in a resonant level coupled to a dissipative environment

Thumbnail
View / Download
749.9 Kb
Date
2013
Authors
Mebrahtu, HT
Borzenets, IV
Zheng, H
Bomze, YV
Smirnov, AI
Florens, S
Baranger, HU
Finkelstein, G
Show More
(8 total)
Repository Usage Stats
42
views
13
downloads
Abstract
A quantum phase transition is an abrupt change between two distinct ground states of a many-body system, driven by an external parameter. In the vicinity of the quantum critical point (QCP) where the transition occurs, a new phase may emerge that is determined by quantum fluctuations and is very different from either phase. In particular, a conducting system may exhibit non-Fermi-liquid behaviour. Although this scenario is well established theoretically, controllable experimental realizations are rare. Here, we experimentally investigate the nature of the QCP in a simple nanoscale system-a spin-polarized resonant level coupled to dissipative contacts. We fine-tune the system to the QCP, realized exactly on-resonance and when the coupling between the level and the two contacts is symmetric. Several anomalous transport scaling laws are demonstrated, including a striking non-Fermi-liquid scattering rate at the QCP, indicating fractionalization of the resonant level into two Majorana quasiparticles.
Type
Journal article
Subject
Science & Technology
Physical Sciences
Physics, Multidisciplinary
Physics
PHASE-TRANSITION
SUPERCONDUCTOR
NANOWIRE
SIGNATURE
Permalink
https://hdl.handle.net/10161/19647
Published Version (Please cite this version)
10.1038/nphys2735
Publication Info
Mebrahtu, HT; Borzenets, IV; Zheng, H; Bomze, YV; Smirnov, AI; Florens, S; ... Finkelstein, G (2013). Observation of Majorana quantum critical behaviour in a resonant level coupled to a dissipative environment. Nature Physics, 9(11). pp. 732-737. 10.1038/nphys2735. Retrieved from https://hdl.handle.net/10161/19647.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Finkelstein

Gleb Finkelstein

Professor of Physics
Gleb Finkelstein is an experimentalist interested in physics of quantum nanostructures, such as Josephson junctions and quantum dots made of carbon nanotubes, graphene, and topological materials. These objects reveal a variety of interesting electronic properties that may form a basis for future quantum devices.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University