Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalized Linear Binning to Compare Hyperpolarized 129Xe Ventilation Maps Derived from 3D Radial Gas Exchange Versus Dedicated Multislice Gradient Echo MRI.

Thumbnail
View / Download
4.3 Mb
Date
2019-11-27
Authors
He, Mu
Wang, Ziyi
Rankine, Leith
Luo, Sheng
Nouls, John
Virgincar, Rohan
Mammarappallil, Joseph
Driehuys, Bastiaan
Show More
(8 total)
Repository Usage Stats
69
views
38
downloads
Abstract
RATIONALE:Hyperpolarized 129Xe ventilation MRI is typically acquired using multislice fast gradient recalled echo (GRE), but interleaved 3D radial 129Xe gas transfer MRI now provides dissolved-phase and ventilation images from a single breath. To investigate whether these ventilation images provide equivalent quantitative metrics, we introduce generalized linear binning analysis. METHODS:This study included 36 patients who had undergone both multislice GRE ventilation and 3D radial gas exchange imaging. Images were then quantified by linear binning to classify voxels into one of four clusters: ventilation defect percentage (VDP), Low-, Medium- or High-ventilation percentage (LVP, MVP, HVP). For 3D radial images, linear binning thresholds were generalized using a Box-Cox rescaled reference histogram. We compared the cluster populations from the two ventilation acquisitions both numerically and spatially. RESULTS:Interacquisition Bland-Altman limits of agreement for the clusters between 3D radial vs GRE were (-7% to 5%) for VDP, (-10% to 14%) for LVP, and (-8% to 8%) for HVP. While binning maps were qualitatively similar between acquisitions, their spatial overlap was modest for VDP (Dice = 0.5 ± 0.2), and relatively poor for LVP (0.3 ± 0.1) and HVP (0.2 ± 0.1). CONCLUSION:Both acquisitions yield reasonably concordant VDP and qualitatively similar maps. However, poor regional agreement (Dice) suggests that the two acquisitions cannot yet be used interchangeably. However, further improvements in 3D radial resolution and reconciliation of bias field correction may well obviate the need for a dedicated ventilation scan in many cases.
Type
Journal article
Subject
3D Radial
Acquisition
Hyperpolarized (129)Xe MRI
Multislice GRE
Quantification
Permalink
https://hdl.handle.net/10161/19675
Published Version (Please cite this version)
10.1016/j.acra.2019.10.016
Publication Info
He, Mu; Wang, Ziyi; Rankine, Leith; Luo, Sheng; Nouls, John; Virgincar, Rohan; ... Driehuys, Bastiaan (2019). Generalized Linear Binning to Compare Hyperpolarized 129Xe Ventilation Maps Derived from 3D Radial Gas Exchange Versus Dedicated Multislice Gradient Echo MRI. Academic radiology. 10.1016/j.acra.2019.10.016. Retrieved from https://hdl.handle.net/10161/19675.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Driehuys

Bastiaan Driehuys

Professor of Radiology
My research program is focused on developing and applying hyperpolarized gases to enable fundamentally new applications in MRI. Currently we use this technology to non-invasively image pulmonary function in 3D. Hyperpolarization involves aligning nuclei to a high degree to enhance their MRI signal by 5-6 orders of magnitude. Thus, despite the low density of gases relative to water (the ordinary signal source in MRI), they can be imaged at high-resolution in a single breath. This technology leads
Luo

Sheng Luo

Professor of Biostatistics & Bioinformatics
Mammarappallil

Joseph George Mammarappallil

Associate Professor of Radiology
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University