Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A chemical method for labeling lysine methyltransferase substrates.

Thumbnail
View / Download
245.1 Kb
Date
2011-01
Authors
Binda, Olivier
Boyce, Michael
Rush, Jason S
Palaniappan, Krishnan K
Bertozzi, Carolyn R
Gozani, Or
Repository Usage Stats
100
views
28
downloads
Abstract
Several protein lysine methyltransferases (PKMTs) modify histones to regulate chromatin-dependent cellular processes, such as transcription, DNA replication and DNA damage repair. PKMTs are likely to have many additional substrates in addition to histones, but relatively few nonhistone substrates have been characterized, and the substrate specificity for many PKMTs has yet to be defined. Thus, new unbiased methods are needed to find PKMT substrates. Here, we describe a chemical biology approach for unbiased, proteome-wide identification of novel PKMT substrates. Our strategy makes use of an alkyne-bearing S-adenosylmethionine (SAM) analogue, which is accepted by the PKMT, SETDB1, as a cofactor, resulting in the enzymatic attachment of a terminal alkyne to its substrate. Such labeled proteins can then be treated with azide-functionalized probes to ligate affinity handles or fluorophores to the PKMT substrates. As a proof-of-concept, we have used SETDB1 to transfer the alkyne moiety from the SAM analogue onto a recombinant histone H3 substrate. We anticipate that this chemical method will find broad use in epigenetics to enable unbiased searches for new PKMT substrates by using recombinant enzymes and unnatural SAM cofactors to label and purify many substrates simultaneously from complex organelle or cell extracts.
Type
Journal article
Subject
Alkynes
Methyltransferases
Lysine
S-Adenosylmethionine
Recombinant Proteins
Staining and Labeling
Molecular Structure
Substrate Specificity
Epigenomics
Permalink
https://hdl.handle.net/10161/19701
Published Version (Please cite this version)
10.1002/cbic.201000433
Publication Info
Binda, Olivier; Boyce, Michael; Rush, Jason S; Palaniappan, Krishnan K; Bertozzi, Carolyn R; & Gozani, Or (2011). A chemical method for labeling lysine methyltransferase substrates. Chembiochem : a European journal of chemical biology, 12(2). pp. 330-334. 10.1002/cbic.201000433. Retrieved from https://hdl.handle.net/10161/19701.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Boyce

Michael Scott Boyce

Associate Professor of Biochemistry
The Boyce Lab studies mammalian cell signaling through protein glycosylation. For the latest news, project information and publications from our group, please visit our web site at http://www.boycelab.org or follow us on Twitter at https://twitter.com/BoyceLab.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University