Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gene set-based Signal-Detection Analyses with Goodness-of-Fit Statistics and Their Application in Complex Diseases

Thumbnail
View / Download
65.8 Mb
Date
2019
Author
Zhang, Mengqi
Advisor
Allen, Andrew S
Repository Usage Stats
132
views
36
downloads
Abstract

Rare diseases are difficult to diagnose and uncertain to treat. The identification of specific genes associated with particular rare diseases and phenotypes can provide insight into the mechanism of certain rare disease subtypes and suggest therapeutic targets to improve patient outcomes. However, single gene-based methods for detecting rare disease-associated variants are often underpowered and can be hard to interpret. Therefore, this dissertation explores alternative approaches based on gene set-based methods. These analyses can be solved with a goodness-of-fit test that assesses whether the distribution of observed statistics of a given set of genes/variants significantly differs from the expected distribution.

This dissertation explores a flexible gene set-based signal-detection framework based on the goodness-of-fit tests. A user-friendly and efficient R program was developed for this research. In addition, this dissertation proposes a new gene-set analyses method that can leverage prior information to inform the detection of whether any of the genes within a biologically informed gene-set is associated with disease phenotypes on a special goodness-of-fit a test called higher criticism. Further, this dissertation investigates the asymptotic distribution of our higher criticism statistic based on the theoretically weighted p-values. Collectively, these methods are innovative because they based on gene set and incorporate the prior information, which enhances the power of associations between rare variants and complex diseases. These results improve the ability to identify and optimally treat genetic disease subtypes.

Description
Dissertation
Type
Dissertation
Department
Computational Biology and Bioinformatics
Subject
Biostatistics
Genetics
Complex Disease
Gene Set-based Analysis
Goodness of Fit Test
Higher Criticism
Permalink
https://hdl.handle.net/10161/19821
Citation
Zhang, Mengqi (2019). Gene set-based Signal-Detection Analyses with Goodness-of-Fit Statistics and Their Application in Complex Diseases. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/19821.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University