Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exclusive Photodisintegration of 3He

Thumbnail
View / Download
95.0 Mb
Date
2019
Author
Friesen, Forrest Quinn Lister
Advisor
Howell, Calvin R.
Repository Usage Stats
163
views
92
downloads
Abstract

Kinematically complete measurements of three-body photodisintegration of $^3$He were performed at the High Intensity $\gamma$-ray Source (HI$\gamma$S) with nearly monoenergetic 15 MeV photons. The experiment relied on two-nucleon coincidence measurements in which the nucleons are emitted on opposite sides of the incident $\gamma$-ray beam axis. The setup consisted of seven 10 cm long cylindrical gas targets pressurized near 4 atm with thin windows to allow low-energy charged particles to exit with acceptable energy loss. Charged particles were detected in silicon strip detectors with angular acceptance constrained by a collimator system. Neutrons were detected in arrays of liquid organic scintillator cells. Data for neutron-proton (np) coincidences were acquired in configurations which selectively include or exclude the np final state interaction. Measurements of proton-proton (pp) coincidences along the same kinematic locus containing the np final state interaction (FSI) were also taken in-situ. Products from the two-body reaction were used as a luminosity monitor. Theory predictions were propagated through a GEANT4 simulation of the experimental setup. There was good agreement between predictions and measurements in the vicinity of the collinear point in which a proton remains at rest as measured by np coincidences. The measured np FSI peak included additional low-energy neutrons not anticipated by the simulation, which are likely associated with intermediate neutron scattering. The np FSI peak was found to be underpredicted by about 20$\%$. The pp coincidence data were consistently about 39$\%$ above predictions.

Description
Dissertation
Type
Dissertation
Department
Physics
Subject
Nuclear physics and radiation
Physics
Particle physics
Permalink
https://hdl.handle.net/10161/19842
Citation
Friesen, Forrest Quinn Lister (2019). Exclusive Photodisintegration of 3He. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/19842.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University