Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerated Motion Planning Through Hardware/Software Co-Design

Thumbnail
View / Download
6.5 Mb
Date
2019
Author
Murray, Sean
Advisor
Sorin, Daniel J
Repository Usage Stats
266
views
314
downloads
Abstract

Robotics has the potential to dramatically change society over the next decade. Technology has matured such that modern robots can execute complex motions with sub-millimeter precision. Advances in sensing technology have driven down the price of depth cameras and increased their performance. However, the planning algorithms used in currently-deployed systems are too slow to react to changing environments; this has restricted the use of high degree-of-freedom (DOF) robots to tightly-controlled environments where planning in real time is not necessary.

Our work focuses on overcoming this challenge through careful hardware/software co-design. We leverage aggressive precomputation and parallelism to design accelerators for several components of the motion planning problem. We present architectures for accelerating collision detection as well as path search. We show how we can maintain flexibility even with custom hardware, and describe microarchitectures that we have implemented at the register-transfer level. We also show how to generate effective planning roadmaps for use with our designs.

Our accelerators bring the total planning latency to less than 3 microseconds, several orders of magnitude faster than the state of the art. This capability makes it possible to deploy systems that plan under uncertainty, use complex decision making algorithms, or plan for multiple robots in a workspace. We hope this technology will push robotics into domains and applications that were previously infeasible.

Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Computer engineering
Robotics
Accelerators
Collision Detection
Computer Architecture
Motion Planning
Robotics
Permalink
https://hdl.handle.net/10161/19887
Citation
Murray, Sean (2019). Accelerated Motion Planning Through Hardware/Software Co-Design. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/19887.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University