Show simple item record

Asymptotic behavior of branching diffusion processes in periodic media

dc.contributor.author Hebbar, P
dc.contributor.author Koralov, L
dc.contributor.author Nolen, J
dc.date.accessioned 2020-03-15T19:47:53Z
dc.date.available 2020-03-15T19:47:53Z
dc.identifier.uri https://hdl.handle.net/10161/20254
dc.description.abstract We study the asymptotic behavior of branching diffusion processes in periodic media. For a super-critical branching process, we distinguish two types of behavior for the normalized number of particles in a bounded domain, depending on the distance of the domain from the region where the bulk of the particles is located. At distances that grow linearly in time, we observe intermittency (i.e., the $k$-th moment dominates the $k$-th power of the first moment for some $k$), while, at distances that grow sub-linearly in time, we show that all the moments converge. A key ingredient in our analysis is a sharp estimate of the transition kernel for the branching process, valid up to linear in time distances from the location of the initial particle.
dc.publisher Institute of Mathematical Statistics
dc.subject math.PR
dc.subject math.PR
dc.subject math.AP
dc.subject 60J80, 60J60, 35K10
dc.title Asymptotic behavior of branching diffusion processes in periodic media
dc.type Journal article
duke.contributor.id Hebbar, P|0973898
duke.contributor.id Nolen, J|0494899
dc.date.updated 2020-03-15T19:47:53Z
pubs.organisational-group Trinity College of Arts & Sciences
pubs.organisational-group Mathematics
pubs.organisational-group Duke
duke.contributor.orcid Hebbar, P|0000-0002-4938-7264
duke.contributor.orcid Nolen, J|0000-0003-4630-2293


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record