Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of long-interval paired-pulse transcranial magnetic stimulation to motion-sensitive visual cortex does not lead to changes in motion discrimination.

Thumbnail
View / Download
736.0 Kb
Date
2020-05-12
Authors
Gamboa, Olga Lucia
Brito, Alexandra
Abzug, Zachary
D'Arbeloff, Tracy
Beynel, Lysianne
Wing, Erik A
Dannhauer, Moritz
Palmer, Hannah
Hilbig, Susan A
Crowell, Courtney A
Liu, Sicong
Donaldson, Rachel
Cabeza, Roberto
Davis, Simon W
Peterchev, Angel V
Sommer, Marc A
Appelbaum, Lawrence G
Show More
(17 total)
Repository Usage Stats
88
views
23
downloads
Abstract
The perception of visual motion is dependent on a set of occipitotemporal regions that are readily accessible to neuromodulation. The current study tested if paired-pulse Transcranial Magnetic Stimulation (ppTMS) could modulate motion perception by stimulating the occipital cortex as participants viewed near-threshold motion dot stimuli. In this sham-controlled study, fifteen subjects completed two sessions. On the first visit, resting motor threshold (RMT) was assessed, and participants performed an adaptive direction discrimination task to determine individual motion sensitivity. During the second visit, subjects performed the task with three difficulty levels as TMS pulses were delivered 150 and 50 ms prior to motion stimulus onset at 120% RMT, under the logic that the cumulative inhibitory effect of these pulses would alter motion sensitivity. ppTMS was delivered at one of two locations: 3 cm dorsal and 5 cm lateral to inion (scalp-based coordinate), or at the site of peak activation for "motion" according to the NeuroSynth fMRI database (meta-analytic coordinate). Sham stimulation was delivered on one-third of trials by tilting the coil 90°. Analyses showed no significant active-versus-sham effects of ppTMS when stimulation was delivered to the meta-analytic (p = 0.15) or scalp-based coordinates (p = 0.17), which were separated by 29 mm on average. Active-versus-sham stimulation differences did not interact with either stimulation location (p = 0.12) or difficulty (p = 0.33). These findings fail to support the hypothesis that long-interval ppTMS recruits inhibitory processes in motion-sensitive cortex but must be considered within the limited parameters used in this design.
Type
Journal article
Subject
Motion Sensitive Cortex
Paired Pulse TMS
Transcranial Magnetic Stimulation
Visual Motion
hMT+
Permalink
https://hdl.handle.net/10161/20695
Published Version (Please cite this version)
10.1016/j.neulet.2020.135022
Publication Info
Gamboa, Olga Lucia; Brito, Alexandra; Abzug, Zachary; D'Arbeloff, Tracy; Beynel, Lysianne; Wing, Erik A; ... Appelbaum, Lawrence G (2020). Application of long-interval paired-pulse transcranial magnetic stimulation to motion-sensitive visual cortex does not lead to changes in motion discrimination. Neuroscience letters. pp. 135022. 10.1016/j.neulet.2020.135022. Retrieved from https://hdl.handle.net/10161/20695.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Appelbaum

Lawrence Gregory Appelbaum

Adjunct Associate Professor in the Department of Psychiatry and Behavioral Sciences
Greg Appelbaum is an Adjunct Associate Professor in the Department of Psychiatry and Behavioral Sciences in the Duke University School of Medicine.  Dr. Appelbaum's research interests primarily concern the brain mechanisms underlying visual cognition, how these capabilities differ among individuals, and how they can be improved through behavioral, neurofeedback, and neuromodulation interventions. Within the field of cognitive neuroscience, his research has addressed visual pe
Cabeza

Roberto Cabeza

Professor of Psychology and Neuroscience
My laboratory investigates the neural correlates of memory and cognition in young and older adults using fMRI. We have three main lines of research: First, we distinguish the neural correlates of various episodic memory processes. For example, we have compared encoding vs. retrieval, item vs. source memory, recall vs. recognition, true vs. false memory, and emotional vs. nonemotional memory. We are particularly interested in the contribution of prefrontal cortex (PFC) and medial temporal lobe (M
Davis

Simon Wilton Davis

Assistant Professor in Neurology
My research centers around the use of structural and functional imaging measures to study the shifts in network architecture in the aging brain. I am specifically interested in changes in how changes in structural and functional connectivity associated with aging impact the semantic retrieval of word or fact knowledge. Currently this involves asking why older adults have particular difficulty in certain kinds of semantic retrieval, despite the fact that vocabularies and knowledge stores typic
Peterchev

Angel V Peterchev

Associate Professor in Psychiatry and Behavioral Sciences
I direct the Brain Stimulation Engineering Lab (BSEL) which focuses on the development, modeling, and application of devices and paradigms for transcranial brain stimulation. Transcranial brain stimulation involves non-invasive delivery of fields (e.g., electric and magnetic) to the brain that modulate neural activity. It is widely used as a tool for research and a therapeutic intervention in neurology and psychiatry, including several FDA-cleared indications. BSEL develops novel technology s
Sommer

Marc A. Sommer

W. H. Gardner, Jr. Associate Professor
We study circuits for cognition. Using a combination of neurophysiology and biomedical engineering, we focus on the interaction between brain areas during visual perception, decision-making, and motor planning. Specific projects include the role of frontal cortex in metacognition, the role of cerebellar-frontal circuits in action timing, the neural basis of "good enough" decision-making (satisficing), and the neural mechanisms of transcranial magnetic stimulation (TMS).
More Authors
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University