Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of a Voxel-Based RadiomicsCalculation Platform for Medical Image Analysis

Thumbnail
Files
Yang_duke_0066N_15606.pdf
17.8 Mb
Yang_duke_0066N_17/Supplementary Material.pdf
205.6 Kb
Date
2020
Author
Yang, Zhenyu
Advisor
Yin, Fang-Fang
Repository Usage Stats
285
views
105
downloads
Abstract

Purpose: To develop a novel voxel-based radiomics extraction technique, and to investigate the potential association between spatially-encoded radiomics features of the lungs and pulmonary function.

Methods: We developed a voxel-based radiomics feature extraction platform to generate radiomics filtered images. Specifically, for each voxel in the image, 62 radiomics features were calculated in a rotationally-invariant 3D neighbourhood to capture spatially-encoded information. In general, such an approach results in an image tensor object, i.e., each voxel in the original image is represented by a 62-dimensional radiomics feature vector. Two digital phantoms are then designed to validate the technique's ability to quantify regional image information. To test the technique as a potential pulmonary biomarker, we generated radiomics filtered images for 25 lung CT image and are subsequently evaluated against corresponding Galligas PET images, as the ground truth for pulmonary function, using voxel-wise Spearman correlation (r). The Canonical Correlation Analysis (CCA)-based feature fusion method is also implemented to enhance such a correlation. Finally, the Spearman distributions were compared with 37 individual CT ventilation image (CTVI) algorithms to assess the overall performance relative to conventional CT-based techniques.

Results: Several radiomics filtered images were identified to be correlated with Galligas PET lung imaging. The most robust association was found to be the Run Length Encoding feature, Run-Length Non-uniformity (0.21<r<0.65, median=0.45). this association can be substantially improved (from 0.21<r<0.65 to 0.32<r<0.73) following CCA-based feature fusion. Furthermore, The association comparison with 37 individual CTVI algorithms reveals that our voxel-based CT radiomics analysis outperforms most CTVI algorithms in characterizing the regional lung functions.

Conclusions: This preliminary study indicates that spatially-encoded lung texture and lung density are potentially associated with pulmonary function as measured via Galligas PET ventilation images. Collectively, low density, heterogeneous coarse lung texture was often associated with lower Galligas radiotracer amounts.

Description
Master's thesis
Type
Master's thesis
Department
Medical Physics DKU
Subject
Medical imaging
feature extraction
pulmonary function
radiomics
Permalink
https://hdl.handle.net/10161/20784
Citation
Yang, Zhenyu (2020). Development of a Voxel-Based RadiomicsCalculation Platform for Medical Image Analysis. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/20784.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University