Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Masters Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of AP/PA Recumbent Technique for Total Body Irradiation

Thumbnail
View / Download
4.9 Mb
Date
2020
Author
Liang, Xiaomin
Advisor
Wu, Qiuwen
Repository Usage Stats
201
views
147
downloads
Abstract

Purpose: Total body irradiation (TBI) is to deplete patient’s bone marrow and suppress the immune system by delivering uniform dose to patient’s whole body with a relatively low dose rate. The widely used total body irradiation (TBI) protocol in many institutions is to extend the source to surface distance (SSD) to over 400 cm in a large treatment room. The TBI techniques currently used at Duke University Medical Center is anteroposterior (AP)/posteroanterior (PA) technique and bilateral technique. Though bilateral technique TBI is executed with simpler treatment planning and setups in a more comfortable position, it could not provide adequate shielding to lungs and kidneys using blocks like AP/PA TBI technique. However, the whole process of block fabricating and verification is labor-consuming and time-costing. This project aims to develop a better AP/PA TBI treatment method in recumbent position, which provides better sparing for lungs and kidneys in any treatment room.

Methods: In this study, we considered different treatment techniques (three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT)), different treatment position (on the floor or on the couch), and different setups (gantry rotation and platform movement). TBI treatment plans were simulated in Eclipse treatment planning system by using both water equivalent phantom and patient CT image. Prescription for the treatment plans was 200 cGy per fraction with 4 fractions. The dose homogeneity should within ±10% of the prescription dose. Dose constraints for kidney and lung are 25% of the prescription dose. In 3DCRT TBI, we applied multi-leaf collimators (MLCs) for OARs shielding and used boost field to provide adequate dose to lungs and kidneys. For IMRT TBI, an iterative optimization algorithm was generated for increasing dose uniformity. By using IMRT, dynamic multi-leaf collimators (DMLCs) provided shielding for kidneys and lungs, which were considered in fluence map optimization. Volume dose and dose profiles were used to analyze the dose uniformity. Measurements with solid water phantom in treatment room were performed to verify the simulation results. IMRT QA with portal imager was performed for phantom.

Results: 3DCRT could not ensure the dose homogeneity and dose deliver accuracy at the same time. To ensure the dose homogeneity in 3DCRT TBI, patient/platform position should be changed between field or applying customized wedge to compensate the inverse square law. For IMRT, the optimization algorithm has excellent performance for both phantom and patients. The dose homogeneity in the mid-plane of both phantom and patients were less than ±5% of the prescription dose after a few iterations. Lungs and kidneys could receive around 25% prescription dose. The simulation and measurement results agree with each other. No additional physical compensators or partial transmission blocks were needed. Portal dose and predict dose perfectly agreed with each other. CR film worked well in positioning. Surface dose enhancement under blocked field was observed.

Conclusion: IMRT technique performed much better than 3DCRT in TBI treatment. In this study, we develop an AP/PA recumbent position IMRT TBI technique that could be used in any linac room. This technique can ensure high dose homogeneity, provide better sparing to lungs and kidneys, and reduce the complexity of TBI treatment planning without the need of labor-intensive compensators and partial transmission blocks.

Description
Master's thesis
Type
Master's thesis
Department
DKU - Medical Physics Master of Science Program
Subject
Therapy
IMRT
Optimization
Total body irradiation
Permalink
https://hdl.handle.net/10161/20803
Citation
Liang, Xiaomin (2020). Investigation of AP/PA Recumbent Technique for Total Body Irradiation. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/20803.
Collections
  • Masters Theses
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Masters Theses


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University