Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advances in Bayesian Factor Modeling and Scalable Gaussian Process Regression

Thumbnail
View / Download
6.8 Mb
Date
2020
Author
Moran, Kelly R.
Advisor
Herring, Amy H.
Repository Usage Stats
341
views
424
downloads
Abstract

Correlated measurements arise across a diverse array of disciplines such as epidemiology, toxicology, genomics, economics, and meteorology. Factor models describe the association between variables by assuming some latent factors drive structured variation therein. Gaussian process (GP) models, on the other hand, describe the association between variables using a distance-based covariance kernel. This dissertation introduces two novel extensions of Bayesian factor models driven by applied problems, and then proposes an algorithm to allow for scalable approximate Bayesian GP sampling. First, the FActor Regression for Verbal Autopsy (FARVA) model is developed for predicting the cause of death and cause-specific mortality fraction in low-resource settings based on verbal autopsies. Both the mean and the association between symptoms provides information used to differentiate decedents across cause of death groups. This class of hierarchical factor regression models avoids restrictive assumptions of standard methods, allows both the mean and covariance to vary with COD category, and can include covariate information on the decedent, region, or events surrounding death. Next, the Bayesian partially Supervised Sparse and Smooth Factor Analysis (BS3FA) model is developed to enable toxicologists, who are faced with a rising tide of chemicals under regulation and in use, to choose which chemicals to prioritize for screening and to predict the toxicity of as-yet-unscreened chemicals based on their molecular structure. Latent factors driving structured variability are assumed to be shared between the molecular structure observations and dose-response observations from high-throughput screening. These shared latent factors allow the model to learn a distance between chemicals targeted to toxicity, rather than one based on molecular structure alone. Finally, the Fast Increased Fidelity Approximate GP (FIFA-GP) allows for the association between observations to be modeled by a high fidelity Gaussian process approximation even when the number of observations is on the order of 10^5. A sampling algorithm that scales at O(n log^2(n)) time is described, and a proof showing that the approximation's Kullback-Leibler divergence to the true posterior can be made arbitrarily small is provided.

Description
Dissertation
Type
Dissertation
Department
Statistical Science
Subject
Statistics
Permalink
https://hdl.handle.net/10161/20849
Citation
Moran, Kelly R. (2020). Advances in Bayesian Factor Modeling and Scalable Gaussian Process Regression. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/20849.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University