Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Automatic Threat Recognition: Considerations for Airport X-Ray Baggage Screening

Thumbnail
View / Download
22.3 Mb
Date
2020
Author
Liang, Kevin J
Advisor
Carin, Lawrence
Repository Usage Stats
259
views
246
downloads
Abstract

Deep learning has made significant progress in recent years, contributing to major advancements in many fields. One such field is automatic threat recognition, where methods based on neural networks have surpassed more traditional machine learning methods. In particular, we evaluate the performance of convolutional object detection models within the context of X-ray baggage screening at airport checkpoints. To do so, we collected a large dataset of scans containing threats from a diverse set of classes, and then trained and compared a number of models. Many currently deployed X-ray scanners contain multiple X-ray emitter-detector pairs arranged to give multiple views of the scanned object, and we find that combining predictions from these improves overall performance. We select the best-performing models fitting our design criteria and integrate them into the X-ray scanning machines, resulting in functional prototypes capable of simulating live screening deployment.

We also explore a number of subfields of deep learning with potential to improve these deep automatic threat recognition algorithms. For example, as data collection efforts are scaled up and the number threat categories are expanded, the likelihood of missing annotations will also increase, especially if this new data is collected from real airport traffic. Such a setting is actually common in object detection datasets, and we show that a positive-unlabeled learning assumption better fits the characteristics of the data. Additionally, real-world data distributions tend to drift over time or evolve cyclically with the seasons. Baggage scan images also tend to be sensitive, meaning storing data may represent a security or privacy risk. As a result, a continual learning setting may be more appropriate for these kinds of data, which we examine in the context of generative adversarial networks. Finally, the sensitivity of security applications makes understanding models especially important. We thus spend some time examining how certain popular neural networks emerge from assumptions made starting from kernel methods. Through these works, we find that deep learning methods show considerable promise to improve existing automatic threat recognition systems.

Description
Dissertation
Type
Dissertation
Department
Electrical and Computer Engineering
Subject
Artificial intelligence
Computer science
Automatic Threat Recognition
Computer Vision
Deep Learning
Machine Learning
Permalink
https://hdl.handle.net/10161/20887
Citation
Liang, Kevin J (2020). Deep Automatic Threat Recognition: Considerations for Airport X-Ray Baggage Screening. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/20887.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University