Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estrogen’s Impact on the Specialized Transcriptome, Brain, and Vocal Learning Behavior of a Sexually Dimorphic Songbird

Thumbnail
Files
Choe_duke_0066D_15548.pdf
11.6 Mb
Choe_duke_0066D_17/Sync blue233 video audio.avi
5.7 Mb
Date
2020
Author
Choe, Ha Na
Advisors
Jarvis, Erich D
Matsunami, Hiroaki
Repository Usage Stats
130
views
476
downloads
Abstract

The song system of the zebra finch (Taeniopygia guttata) is highly sexually dimorphic, where only males develop the neural structures necessary to learn and produce learned vocalizations in adulthood. During early development, both males and females begin to develop their song system in a monomorphic manner, which diverges shortly after the onset of a critical sensory learning phase and results in reduced cell survival and proliferation in females, and accelerated cell proliferation in males. Estrogen has long been known to be involved in coordinating sexual development of the perinatal brain and nestling female zebra finches treated with estrogen do not exhibit this female-specific atrophy of the song system. How estrogen influences the development of the song system, and what it is doing at the molecular level has not been examined utilizing current generation sequencing technology.

In this dissertation, I tested whether estrogen manipulation impacts the transcriptomic profiles of telencephalic song learning nuclei in males and females. I treated animals with either vehicle, exemestane (an estrogen synthesis inhibitor), or 17-β-estradiol from the moment of hatching until time of sacrifice. I collected the song learning nuclei and their surrounding brain regions during the onset of sensory motor learning for transcriptomic analysis or during adulthood after collecting behavior. I found that of the 4 telencephalic song nuclei examined during the onset of the sensorimotor learning period at post hatch day 30, Area X was the most sexually dimorphic and the most impacted by estrogen administration. HVC was less sexually dimorphic and less impacted by estrogen manipulation. RA and LMAN had limited sexually dimorphic features, with little impact on their transcriptomes with estrogen manipulation. Additionally, I found that chronic estrogen depletion in males delayed male specific plumage development and resulted in impaired song learning. This supports the notion that while estrogen is sufficient in preventing atrophy of the song system in female zebra finches, it is not necessary for the gross development in males and may instead refine normal song development.

Description
Dissertation
Type
Dissertation
Department
Molecular Genetics and Microbiology
Subject
Neurosciences
Genetics
Behavior
Development
Estrogen
RNA-seq
Sexual Dimorphism
Songbird
Permalink
https://hdl.handle.net/10161/20896
Citation
Choe, Ha Na (2020). Estrogen’s Impact on the Specialized Transcriptome, Brain, and Vocal Learning Behavior of a Sexually Dimorphic Songbird. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/20896.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University