Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian Computation for Variable Selection and Multivariate Forecasting in Dynamic Models

Thumbnail
View / Download
11.1 Mb
Date
2020
Author
Lavine, Isaac
Advisor
West, Mike
Repository Usage Stats
288
views
1,057
downloads
Abstract

Challenges arise in time series analysis due to the need for sequential forecasting and updating of model parameters as data is observed. This dissertation presents techniques for efficient Bayesian computation in multivariate time series analysis. Computational scalability is a core focus of this work, and often rests on the decouple-recouple concept in which multivariate models are decoupled into univariate models for efficient inference, and then recoupled to produce joint forecasts. The first section of this dissertation develops novel methods for variable selection in which models are scored and weighted based on specific forecasting and decision goals. In the time series setting, standard marginal likelihoods correspond to 1−step forecast densities, and considering alternate objectives is shown to improve long-term forecast accuracy. Scoring models based on forecast objectives can be computationally intensive, so the model space is reduced by evaluating univariate models separately along each dimension. This enables an efficient search over large, higher dimensional model spaces. A second area of focus in this dissertation is product demand forecasting, driven by applied considerations in grocery store sales. A novel copula model is developed for multivariate forecasting with Dynamic Generalized Linear Models (DGLMs), with a variational Bayes strategy for inference in latent factor DGLMs. Three applied case studies demonstrate that these techniques increase computational efficiency by several orders of magnitude over comparable multivariate models, without any loss of forecast accuracy. An additional area of interest in product demand forecasting is the effect of holidays and special events. An error correction model is introduced for this context, demonstrating strong predictive performance across a variety of holidays and retail item categories. Finally, a new Python package for Bayesian DGLM analysis, PyBATS, provides a set of tools for user-friendly analysis of univariate and multivariate time series.

Description
Dissertation
Type
Dissertation
Department
Statistical Science
Subject
Statistics
Bayesian
Multivariate Forecasting
Sales Forecasting
Time Series
Variable Selection
Permalink
https://hdl.handle.net/10161/20931
Citation
Lavine, Isaac (2020). Bayesian Computation for Variable Selection and Multivariate Forecasting in Dynamic Models. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/20931.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University