Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of Biomaterials toward Endogenous Skeletal Tissue Repair

Thumbnail
View / Download
47.1 Mb
Date
2020
Author
Zeng, Yuze
Advisor
Varghese, Shyni
Repository Usage Stats
175
views
11
downloads
Abstract

Repair of skeletal tissues remains a significant challenge in patient care as there is high incidence of impaired fracture healing as well as irreversible cartilage degeneration following joint injury. To improve the repair outcome, recent advancements have been made in regenerative medicine involving administration of tissue-specific growth factors and transplantation of stem cells. While they have achieved some success, their broad clinical application is hindered by various challenges, notably high costs and safety concerns. Alternatively, strategies that enable innate repair mechanisms without cell or protein products may hold great potential for tissue repair. In this dissertation, I explore biomaterials that are low-risk, cost-effective, and capable of leveraging endogenous healing mechanisms to promote skeletal tissue health.

Adenosine, a nucleoside ubiquitously present in the human body, is a potent pro-healing small molecule. A surge in adenosine secretion ensuing from injury is integral to the natural repair mechanisms. There is growing evidence that harnessing adenosine signaling can be a powerful therapeutic strategy. However, the needed abundance of adenosine often does not persist throughout the healing process due to the fast clearance or imbalanced bone homeostasis. Herein, I describe a synthetic biomaterial containing boronate molecules that sequesters adenosine reversibly and sustains the pro-regenerative signaling locally at the injury site. I demonstrate that implantation of the biomaterial post-fracture establishes an in-situ stockpile of adenosine, resulting in accelerated healing by promoting both osteoblastogenesis and angiogenesis. This biomaterial-assisted approach can leverage the transient increase in extracellular adenosine following injury to present adenosine to cells in a temporal manner. In addition to sequestering endogenous adenosine, the biomaterial is able to deliver exogenous adenosine to the site of injury, offering a versatile solution to utilizing adenosine as a potential therapeutic for tissue repair. Given the wide distribution of adenosine in the body, this biomaterial system can have a significant impact on a wide range of diseases by modulating local adenosine signaling, thus advancing its clinical applications beyond bone health.

Hyaluronic acid is a key component in synovial fluid that protects cartilage and facilitates painless motion. Loss of hyaluronic acid after joint trauma disrupts the native protection mechanism and contributes to the deterioration of cartilage and subsequent osteoarthritis. Although replenishing native hyaluronic acid with viscosupplementation is commonly used in clinics, its therapeutic efficacy is largely inconsistent at least in part due to the short joint retention. To enhance the longevity and chondroprotective function of hyaluronic acid supplementation, I report a design of self-healing supramolecular biomaterial by incorporating dynamic physical crosslinking into hyaluronic acid. Consequently, the supramolecular biomaterial exhibits unique shear-thinning by reshuffling the crosslinking in response to mechanical force, resulting in improved injectability and lubrication. Furthermore, the supramolecular biomaterial is rapidly reconstructed in the absence of force, forming a stable, crosslinked network. Using a murine model of anterior cruciate ligament injury, I confirm that the supramolecular biomaterial minimizes cartilage damage with an extended joint residence in comparison with the unmodified hyaluronic acid. Therefore, the introduction of physical crosslinking to create such a self-healing biomaterial can serve as an effective solution to chondroprotection.

Together, this dissertation offers two novel biomaterial systems to support bone and cartilage health. They are developed to capture the potential of endogenous healing mechanisms, highlighting a new paradigm of biomaterial engineering for regenerative medicine.

Description
Dissertation
Type
Dissertation
Department
Mechanical Engineering and Materials Science
Subject
Materials Science
Biomedical engineering
Biomaterials
Endogenous healing
Skeletal tissues
Permalink
https://hdl.handle.net/10161/21040
Citation
Zeng, Yuze (2020). Design of Biomaterials toward Endogenous Skeletal Tissue Repair. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/21040.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University