Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonuniform Planning Target Volume Margins for Prostate Bed on the Basis of Surgical Clips on Daily Cone Beam Computed Tomography.

Thumbnail
View / Download
664.9 Kb
Date
2019-01
Authors
Song, Haijun
Salama, Joseph K
Lee, William Robert
Wu, Qiuwen
Repository Usage Stats
47
views
14
downloads
Abstract
Purpose:We hypothesized that the interfraction motions of the superior and inferior prostate beds differ and therefore require different margins. In this study, we used daily cone beam computed tomography (CBCT) to evaluate the motion of postprostatectomy surgical clips (separated to superior and inferior portions) within the planning target volume (PTV) to derive data-driven PTV margins. Methods and Materials:Our study cohort included consecutive patients with identifiable surgical clips undergoing prostate bed irradiation with daily CBCT image guidance. We identified and contoured the clips within the PTV on the planning computed tomography and CBCT scans. All CBCT scans were registered to the planning computed tomography scan on the basis of pelvic bony structures. The superior border of the pubic symphysis was used to mark the division between the superior and inferior portions. Results:Eleven patients with 263 CBCT scans were included in the cohort. In the left-right direction, the global mean M, systematic error Σ, and residue error σ were 0.02, 0.03, and 0.16 cm, respectively, for superior clips, and 0.00, 0.03, and 0.03 cm, respectively, for inferior clips. In the anterior-posterior direction, the corresponding values were M = 0.01, Σ = 0.25, and σ= 0.37, respectively, for superior, and M = 0.08, Σ= 0.13, σ= 0.15, respectively, for inferior. In the superior-inferior direction, the values were M =-0.06, Σ= 0.23, and σ= 0.27, respectively, for superior, and M =-0.01, Σ= 0.21, σ= 0.20, respectively, for inferior. The results of the 2-tailed F tests showed that the anterior-posterior motion is statistically different between the superior and inferior portions in the anterior-posterior direction. There is no statistical difference in the superior-inferior and lateral directions. Therefore, we propose a set of nonuniform PTV margins (based on the formula 2.5 Σ+ 0.7σ) as 0.2 cm for all prostate beds in the left-right direction, 0.7 cm for all in superior-inferior, and 0.9 to 0.4 for superior-inferior in the anterior-posterior direction. Conclusions:The difference in motion between the superior and inferior portions of the prostate bed is statistically insignificant in the left-right and superior-inferior directions, but statistically significant in the anterior-posterior direction, which warrants a nonuniform PTV margin scheme.
Type
Journal article
Permalink
https://hdl.handle.net/10161/21118
Published Version (Please cite this version)
10.1016/j.adro.2018.09.014
Publication Info
Song, Haijun; Salama, Joseph K; Lee, William Robert; & Wu, Qiuwen (2019). Nonuniform Planning Target Volume Margins for Prostate Bed on the Basis of Surgical Clips on Daily Cone Beam Computed Tomography. Advances in radiation oncology, 4(1). pp. 186-190. 10.1016/j.adro.2018.09.014. Retrieved from https://hdl.handle.net/10161/21118.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Lee

W. Robert Lee

Professor of Radiation Oncology
Prostate cancer, Intensity-modulated radiation therapy (IMRT), Image-guided radiation therapy (IGRT), Stereotactic Body Radiation Therapy (SBRT), Prostate HDR and LDR Brachytherapy, Quality of Life, Educational Technology
Salama

Joseph Kamel Salama

Professor of Radiation Oncology
I have the privilege to be the Chief of the Durham VA Radiation Oncology Service, where I care for veterans who have served our country. I am a dedicated educator, serving as the Residency Program Director for the Duke Radiation Oncology Residency Program.  I am also a cancer researcher developing novel treatment techniques for patients with head and neck cancer, lung cancer, prostate cancer, and those limited metastatic disease, and integration of these treatments with drug therapies.&nbsp
Song

Haijun Song

Assistant Professor of Radiation Oncology
Reference dosimetry, Experimental dosimetry, Radiation therapy using neutron and charged particles.
Wu

Qiuwen Wu

Professor of Radiation Oncology
My research interests include intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), Dynamic Electron Arc Radiotherapy (DEAR) and image-guided radiation therapy (IGRT). For IMRT, my work include the development of the research platform, fast and accurate dose calculations, optimization based on physical and biological objectives such as generalized equivalent uniform dose (gEUD), and delivery with dynamic multi-leaf collimator (DMLC). For VMAT, I am interested in
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University