Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Yielding, rigidity, and tensile stress in sheared columns of hexapod granules

Thumbnail
View / Download
2.7 Mb
Authors
Zhao, Yuchen
Barés, Jonathan
Socolar, Joshua ES
Repository Usage Stats
33
views
10
downloads
Abstract
Granular packings of non-convex or elongated particles can form free-standing structures like walls or arches. For some particle shapes, such as staples, the rigidity arises from interlocking of pairs of particles, but the origins of rigidity for non-interlocking particles remains unclear. We report on experiments and numerical simulations of sheared columns of ``hexapods,'' particles consisting of three mutually orthogonal sphero-cylinders whose centers coincide. We vary the length-to-diameter aspect ratio, $\alpha$, of the sphero-cylinders and subject the packings to quasistatic direct shear. For small $\alpha$, we observe a finite yield stress. For large $\alpha$, however, the column becomes rigid when sheared, supporting stresses that increase sharply with increasing strain. Analysis of X-ray micro-computed tomography (Micro-CT) data collected during the shear reveals that the stiffening is associated with a tilted, oblate cluster of hexapods near the nominal shear plane in which particle deformation and average contact number both increase. Simulation results show that the particles are collectively under tension along one direction even though they do not interlock pairwise. These tensions comes from contact forces carrying large torques, and they are perpendicular to the compressive stresses in the packing. They counteract the tendency to dilate, thus stabilize the particle cluster.
Type
Journal article
Subject
cond-mat.soft
cond-mat.soft
cond-mat.stat-mech
Permalink
https://hdl.handle.net/10161/21148
Published Version (Please cite this version)
10.1103/physreve.101.062903
Publication Info
Zhao, Yuchen; Barés, Jonathan; & Socolar, Joshua ES (n.d.). Yielding, rigidity, and tensile stress in sheared columns of hexapod granules. Physical Review E, 101(6). pp. 062903. 10.1103/physreve.101.062903. Retrieved from https://hdl.handle.net/10161/21148.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Socolar

Joshua Socolar

Professor of Physics
Prof. Socolar is interested in collective behavior in condensed matter and dynamical systems. His current research interests include: Limit-periodic structures, quasicrystals, packing problems, and tiling theory; Self-assembly and phases of designed colloidal particles; Organization and dynamics of complex networks; Topological elasticity of mechanical lattices.
Zhao

Yuchen Zhao

Student
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University