Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity

Thumbnail
View / Download
2.2 Mb
Date
2019-02-12
Authors
Chen, C
Barcellos, D
Richter, DD
Schroeder, PA
Thompson, A
Repository Usage Stats
9
views
3
downloads
Abstract
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Purpose: Iron (Fe) oxyhydroxides and their degree of ordering or crystallinity strongly impact the role that Fe plays in ecosystem function. Lower crystallinity phases are generally found to be more reactive than higher crystallinity phases as sorbents for organic matter and chemical compounds, as electron acceptors for organic matter mineralization or as electron donors for dysoxic respiration. We investigated Fe solid phase speciation as a function of soil depth in a redoximorphic upland soil profile. Materials and methods: We examined a redoximorphic upland soil profile, which displayed alternating Fe-enriched and Fe-depleted zones of the Bt horizons with platy structure from 56 to 183 cm depth at the Calhoun Critical Zone Observatory in South Carolina, USA. Redoximorphic Fe depletion and enrichment zones were sampled to enable a detailed investigation of Fe mineralogy during redox transformations. All samples were characterized by total elemental analysis, X-ray diffraction, and 57 Fe Mössbauer spectroscopy. Results and discussion: Total Fe in the Fe-enriched and Fe-depleted zones was 26.3 – 61.2 and 15.0 – 22.7 mg kg −1 soil, respectively, suggesting periodic redox cycling drives Fe redistribution within the upland soil profile. The Mössbauer data clearly indicated goethite (56 – 74% of total Fe) and hematite (7 – 31% of total Fe) in the Fe-enriched zones, with the proportion of hematite increasing with depth at the expense of goethite. In addition, the overall crystallinity of Fe phases increased with depth in the Fe-enriched zones. In contrast to Fe-enriched zones, Fe-depleted zones contained no hematite and substantially less goethite (and of a lower crystallinity) but more aluminosilicates-Fe(III) (e.g., hydroxy-interlayered vermiculite, biotite, kaolinite) with XRD and Mössbauer data suggesting a shift from oxidized biotite-Fe(III) at depth to hydroxy-interlayered vermiculite plus low-crystallinity goethite in the Fe-depleted zones in the upper Bt. Conclusions: Our data suggest the varied crystalline states of hematite and goethite may be important for Fe reduction over long-term time scales. The persistence of low-crystallinity Fe phases in Fe depletion zones suggests that both dissolution and re-precipitation events occur in the Fe-depleted layers. These variations in Fe phase abundance and crystallinity within similar redoximorphic features suggest that Fe likely shifts ecosystem roles as a function of soil depth and likely has more rapid Fe cycling in the upper Bt horizons in upland soils, while serving as a weathering engine at depth.
Type
Journal article
Subject
Science & Technology
Life Sciences & Biomedicine
Environmental Sciences
Soil Science
Environmental Sciences & Ecology
Agriculture
Fe-57 Mossbauer spectroscopy
Fe mineralogy
Redox cycling
Soil depth
Upland
X-ray diffraction
TROPICAL FOREST SOIL
ORGANIC-MATTER
MICROBIAL REDUCTION
MOSSBAUER-SPECTROSCOPY
ISOTOPE FRACTIONATION
FE(III) OXIDES
3 DECADES
FERRIHYDRITE
CARBON
FE
Permalink
https://hdl.handle.net/10161/21233
Published Version (Please cite this version)
10.1007/s11368-018-2068-2
Publication Info
Chen, C; Barcellos, D; Richter, DD; Schroeder, PA; & Thompson, A (2019). Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity. Journal of Soils and Sediments, 19(2). pp. 785-797. 10.1007/s11368-018-2068-2. Retrieved from https://hdl.handle.net/10161/21233.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Richter

Daniel D. Richter

Professor in the Nicholas School of the Environment and Earth Sciences
Richter’s research and teaching links soils with ecosystems and the wider environment, most recently Earth scientists’ Critical Zone.  He focuses on how humanity is transforming Earth’s soils from natural to human-natural systems, specifically how land-uses alter soil processes and properties on time scales of decades, centuries, and millennia.  Richter's book, Understanding Soil Change (Cambridge University Press), co-authored with his former PhD
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles

Related items

Showing items related by title, author, creator, and subject.

  • Thumbnail

    Evaluating the best available social science for natural resource management decision-making 

    Charnley, S; Carothers, C; Satterfield, T; Levine, A; Poe, MR; Norman, K; Donatuto, J; ... (14 authors) (Environmental Science and Policy, 2017-07-01)
    © 2017 Increasing recognition of the human dimensions of natural resource management issues, and of social and ecological sustainability and resilience as being inter-related, highlights the importance of applying social ...
  • Thumbnail

    The Anthropocene: A conspicuous stratigraphical signal of anthropogenic changes in production and consumption across the biosphere 

    Williams, M; Zalasiewicz, J; Waters, CN; Edgeworth, M; Bennett, C; Barnosky, AD; Ellis, EC; ... (25 authors) (Earth's Future, 2016-03-01)
    © 2016 The Authors. Biospheric relationships between production and consumption of biomass have been resilient to changes in the Earth system over billions of years. This relationship has increased in its complexity, from ...
  • Thumbnail

    Topographic variability and the influence of soil erosion on the carbon cycle 

    Dialynas, YG; Bastola, S; Bras, RL; Billings, SA; Markewitz, D; Richter, DDB (Global Biogeochemical Cycles, 2016-05-01)
    ©2016. American Geophysical Union. All Rights Reserved. Soil erosion, particularly that caused by agriculture, is closely linked to the global carbon (C) cycle. There is a wide range of contrasting global estimates of how ...

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University