Show simple item record

Non-reversible Markov chain Monte Carlo for sampling of districting maps

dc.contributor.author Herschlag, Gregory
dc.contributor.author Mattingly, Jonathan C
dc.contributor.author Sachs, Matthias
dc.contributor.author Wyse, Evan
dc.date.accessioned 2020-08-27T13:34:02Z
dc.date.available 2020-08-27T13:34:02Z
dc.identifier.uri https://hdl.handle.net/10161/21346
dc.description.abstract Evaluating the degree of partisan districting (Gerrymandering) in a statistical framework typically requires an ensemble of districting plans which are drawn from a prescribed probability distribution that adheres to a realistic and non-partisan criteria. In this article we introduce novel non-reversible Markov chain Monte-Carlo (MCMC) methods for the sampling of such districting plans which have improved mixing properties in comparison to previously used (reversible) MCMC algorithms. In doing so we extend the current framework for construction of non-reversible Markov chains on discrete sampling spaces by considering a generalization of skew detailed balance. We provide a detailed description of the proposed algorithms and evaluate their performance in numerical experiments.
dc.subject stat.CO
dc.subject stat.CO
dc.subject math.PR
dc.subject 60J10, 60J20, 62P99
dc.subject G.3; G.2
dc.title Non-reversible Markov chain Monte Carlo for sampling of districting maps
dc.type Journal article
duke.contributor.id Herschlag, Gregory|0468196
duke.contributor.id Mattingly, Jonathan C|0297691
duke.contributor.id Sachs, Matthias|0807826
dc.date.updated 2020-08-27T13:33:58Z
pubs.organisational-group Trinity College of Arts & Sciences
pubs.organisational-group Mathematics
pubs.organisational-group Duke
pubs.organisational-group Staff
duke.contributor.orcid Herschlag, Gregory|0000-0001-5443-6449
duke.contributor.orcid Mattingly, Jonathan C|0000-0002-1819-729X
duke.contributor.orcid Sachs, Matthias|0000-0002-9003-337X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record