Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
  •   DukeSpace
  • Theses and Dissertations
  • Duke Dissertations
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization-based Motion Planning for Humanoid Fall Recovery

Thumbnail
View / Download
9.6 Mb
Date
2020
Author
Wang, Shihao
Advisor
Hauser, Kris
Repository Usage Stats
171
views
36
downloads
Abstract

Humanoid robots are created to look like humans, behave like humans, and ultimately reason in the same level as humans. Carrying on the hopes for emulating human beings' capabilities of performing dexterously and reliably in real world scenarios, humanoids are expected to undertake a wide variety of tasks including taking care of the elderly, doing house cleaning and disinfecting (especially important during COVID-19), and conducting operations in dangerous situations such as search and rescue during fire or earthquakes. The realization of these expectations of humanoid platforms needs continuous coordination of their upper and lower limbs in challenging environments and legged robots' inherent terrain adaptability makes them competent to provide assistance in these hazardous conditions. Though being considered as attractive candidates, humanoid robots suffer from a great risk of falling resulting from a relatively high center of mass position and a limited area of region of support. This prone-to-falling characteristic of humanoids’ bipedal walking makes them much harder to control, and falls can cause costly failures. As a result, the ability to regain balance from falling is a prerequisite before humanoids can be confidently applied to execute significant tasks. Despite the rise of relevant research on humanoid fall recovery in recent decades, humanoid's self-balancing in response to unexpected disturbances in arbitrary environment remains to be a difficult problem due to humanoid's high degrees of freedom, complicated nonlinear system dynamics, and a ``real-time" computational requirement owing to falling.

This dissertation focuses humanoid fall recovery with optimization-based motion planning approach. To advance state-of-the-art recovery strategies which mainly focus on open environment, I introduce motion planning algorithms which generalize fall recovery to both open and cluttered environments. I demonstrate two main contributions in this dissertation:1. The development and implementation of an efficient motion planner which enables humanoid to recover from falling by making hand contact with walls or other surfaces in the cluttered environment. This approach extends humanoid's balancing capability to cluttered environment with making hand contact and this ability to make use of environmental object for fall prevention improves humanoids' efficiency and reliability. 2. The proposal and development of a multi-contact motion planner which generalizes humanoid fall recovery in both open and cluttered environment. This algorithm unifies existing recovery strategies, such as inertial shaping, protective stepping, and hand contact, and automatically plans one strategy or a combination of strategies to regain robot's balance based on its disturbed state and nearby environment features. By enabling humanoid to reason how to regain balance on its own, this algorithm makes a significant contribution to the improvement of humanoid's sustainability in arbitrary environment.

Overall, these contributions advance state-of-the-art humanoid technologies with the ability to 1). use hand contact for fall prevention in cluttered environment and 2). reason how to regain balance in both open and cluttered environments. By further enhancing legged machines' capability of self-balancing, methods discussed in this dissertation have the potential to realize a more effective and more reliable humanoid performance in real world.

Description
Dissertation
Type
Dissertation
Department
Mechanical Engineering and Materials Science
Subject
Robotics
fall recovery
humanoid robot
motion planning
trajectory optimization
Permalink
https://hdl.handle.net/10161/22157
Citation
Wang, Shihao (2020). Optimization-based Motion Planning for Humanoid Fall Recovery. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/22157.
Collections
  • Duke Dissertations
More Info
Show full item record
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.

Rights for Collection: Duke Dissertations


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University