Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-resolution crystal structures of Escherichia coli FtsZ bound to GDP and GTP.

Thumbnail
View / Download
1.5 Mb
Date
2020-02-05
Authors
Schumacher, Maria A
Ohashi, Tomoo
Corbin, Lauren
Erickson, Harold P
Repository Usage Stats
23
views
8
downloads
Abstract
Bacterial cytokinesis is mediated by the Z-ring, which is formed by the prokaryotic tubulin homolog FtsZ. Recent data indicate that the Z-ring is composed of small patches of FtsZ protofilaments that travel around the bacterial cell by treadmilling. Treadmilling involves a switch from a relaxed (R) state, favored for monomers, to a tense (T) conformation, which is favored upon association into filaments. The R conformation has been observed in numerous monomeric FtsZ crystal structures and the T conformation in Staphylococcus aureus FtsZ crystallized as assembled filaments. However, while Escherichia coli has served as a main model system for the study of the Z-ring and the associated divisome, a structure has not yet been reported for E. coli FtsZ. To address this gap, structures were determined of the E. coli FtsZ mutant FtsZ(L178E) with GDP and GTP bound to 1.35 and 1.40 Å resolution, respectively. The E. coli FtsZ(L178E) structures both crystallized as straight filaments with subunits in the R conformation. These high-resolution structures can be employed to facilitate experimental cell-division studies and their interpretation in E. coli.
Type
Journal article
Subject
Escherichia coli
Bacterial Proteins
Cytoskeletal Proteins
Guanosine Diphosphate
Guanosine Triphosphate
Crystallography, X-Ray
Protein Conformation
Models, Molecular
Permalink
https://hdl.handle.net/10161/22293
Published Version (Please cite this version)
10.1107/s2053230x20001132
Publication Info
Schumacher, Maria A; Ohashi, Tomoo; Corbin, Lauren; & Erickson, Harold P (2020). High-resolution crystal structures of Escherichia coli FtsZ bound to GDP and GTP. Acta crystallographica. Section F, Structural biology communications, 76(Pt 2). pp. 94-102. 10.1107/s2053230x20001132. Retrieved from https://hdl.handle.net/10161/22293.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Erickson

Harold Paul Erickson

James B. Duke Distinguished Professor of Cell Biology
Cytoskeleton: It is now clear that the actin and microtubule cytoskeleton originated in bacteria. Our major research is on FtsZ, the bacterial tubulin homolog, which assembles into a contractile ring that divides the bacterium. We have studied FtsZ assembly in vitro, and found that it assembles into thin protofilaments (pfs). Dozens of these pfs are further clustered to form the contractile Z-ring in vivo. Some important discoveries in the last ten years include: &bul
Schumacher

Maria Anne Schumacher

Nanaline H. Duke Distinguished Professor of Biochemistry
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University