Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microtubule Assembly from Single Flared Protofilaments-Forget the Cozy Corner?

Thumbnail
View / Download
840.6 Kb
Date
2019-06
Author
Erickson, Harold P
Repository Usage Stats
26
views
8
downloads
Abstract
A paradigm shift for models of MT assembly is suggested by a recent cryo-electron microscopy study of microtubules (MTs). Previous assembly models have been based on the two-dimensional lattice of the MT wall, where incoming subunits can add with longitudinal and lateral bonds. The new study of McIntosh et al. concludes that the growing ends of MTs separate into flared single protofilaments. This means that incoming subunits must add onto the end of single protofilaments, forming only a longitudinal bond. How can growth of single-stranded protofilaments exhibit cooperative assembly with a critical concentration? An answer is suggested by FtsZ, the bacterial tubulin homolog, which assembles into single-stranded protofilaments. Cooperative assembly of FtsZ is thought to be based on conformational changes that switch the longitudinal bond from low to high affinity when the subunit is incorporated in a protofilament. This novel mechanism may also apply to tubulin assembly and could be the primary mechanism for assembly onto single flared protofilaments.
Type
Journal article
Subject
Microtubules
Guanosine Diphosphate
Models, Biological
Permalink
https://hdl.handle.net/10161/22298
Published Version (Please cite this version)
10.1016/j.bpj.2019.05.005
Publication Info
Erickson, Harold P (2019). Microtubule Assembly from Single Flared Protofilaments-Forget the Cozy Corner?. Biophysical journal, 116(12). pp. 2240-2245. 10.1016/j.bpj.2019.05.005. Retrieved from https://hdl.handle.net/10161/22298.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Erickson

Harold Paul Erickson

James B. Duke Distinguished Professor of Cell Biology
Cytoskeleton: It is now clear that the actin and microtubule cytoskeleton originated in bacteria. Our major research is on FtsZ, the bacterial tubulin homolog, which assembles into a contractile ring that divides the bacterium. We have studied FtsZ assembly in vitro, and found that it assembles into thin protofilaments (pfs). Dozens of these pfs are further clustered to form the contractile Z-ring in vivo. Some important discoveries in the last ten years include: &bul
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University