Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

L form bacteria growth in low-osmolality medium.

Thumbnail
View / Download
2.8 Mb
Date
2019-08
Authors
Osawa, Masaki
Erickson, Harold P
Repository Usage Stats
33
views
132
downloads
Abstract
L form bacteria do not have a cell wall and are thought to require medium of high osmolality for survival and growth. In this study we tested whether L forms can adapt to growth in lower osmolality medium. We first tested the Escherichia coli L form NC-7, generated in 1987 by Onoda following heavy mutagenesis. We started with growth in osmoprotective medium (~ 764 mOsm kg-1) and diluted it stepwise into medium of lower osmolality. At each step the cells were given up to 10 days to adapt and begin growing, during which they apparently acquired multiple new mutations. We eventually obtained a strain that could grow in LB containing only 34 mM NaCl, 137 mOsm kg-1 total. NC-7 showed a variety of morphologies including spherical, angular and cylindrical cells. Some cells extruded a bud that appeared to be the outer membrane enclosing an enlarged periplasm. Additional evidence for an outer membrane was sensitivity of the cells to the compound CHIR-090, which blocks the LPS pathway, and to EDTA which chelates Mg that may stabilize and rigidify the LPS in the outer membrane. We suggest that the mechanical rigidity of the outer membrane enables the angular shapes and provides some resistance to turgor in the low-osmolality media. Interestingly, cells that had an elongated shape underwent division shortly after addition of EDTA, suggesting that reducing the rigidity of the outer membrane under some turgor pressure induces division before lysis occurs. We then tested a well-characterized L form from Bacillus subtilis. L form strain LR-2L grew well with sucrose at 1246 and 791 mOsm kg-1. It survived when diluted directly into 440 mOsm kg-1 but grew poorly, achieving only 1/10 to 1/5 the density. The B. subtilis L form apparently adapted to this direct dilution by rapidly reducing cytoplasmic osmolality.
Type
Journal article
Subject
L Forms
Bacillus subtilis
Escherichia coli
Cell Culture Techniques
Osmolar Concentration
Permalink
https://hdl.handle.net/10161/22299
Published Version (Please cite this version)
10.1099/mic.0.000799
Publication Info
Osawa, Masaki; & Erickson, Harold P (2019). L form bacteria growth in low-osmolality medium. Microbiology (Reading, England), 165(8). pp. 842-851. 10.1099/mic.0.000799. Retrieved from https://hdl.handle.net/10161/22299.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Erickson

Harold Paul Erickson

James B. Duke Distinguished Professor of Cell Biology
Cytoskeleton: It is now clear that the actin and microtubule cytoskeleton originated in bacteria. Our major research is on FtsZ, the bacterial tubulin homolog, which assembles into a contractile ring that divides the bacterium. We have studied FtsZ assembly in vitro, and found that it assembles into thin protofilaments (pfs). Dozens of these pfs are further clustered to form the contractile Z-ring in vivo. Some important discoveries in the last ten years include: &bul

Masaki Osawa

Assistant Research Professor of Cell Biology
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University