Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Research and Writings
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Research and Writings
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CoA synthase regulates mitotic fidelity via CBP-mediated acetylation.

Thumbnail
View / Download
3.5 Mb
Date
2018-03-12
Authors
Lin, Chao-Chieh
Kitagawa, Mayumi
Tang, Xiaohu
Hou, Ming-Hsin
Wu, Jianli
Qu, Dan Chen
Srinivas, Vinayaka
Liu, Xiaojing
Thompson, J Will
Mathey-Prevot, Bernard
Yao, Tso-Pang
Lee, Sang Hyun
Chi, Jen-Tsan
Show More
(13 total)
Repository Usage Stats
24
views
1
downloads
Abstract
The temporal activation of kinases and timely ubiquitin-mediated degradation is central to faithful mitosis. Here we present evidence that acetylation controlled by Coenzyme A synthase (COASY) and acetyltransferase CBP constitutes a novel mechanism that ensures faithful mitosis. We found that COASY knockdown triggers prolonged mitosis and multinucleation. Acetylome analysis reveals that COASY inactivation leads to hyper-acetylation of proteins associated with mitosis, including CBP and an Aurora A kinase activator, TPX2. During early mitosis, a transient CBP-mediated TPX2 acetylation is associated with TPX2 accumulation and Aurora A activation. The recruitment of COASY inhibits CBP-mediated TPX2 acetylation, promoting TPX2 degradation for mitotic exit. Consistently, we detected a stage-specific COASY-CBP-TPX2 association during mitosis. Remarkably, pharmacological and genetic inactivation of CBP effectively rescued the mitotic defects caused by COASY knockdown. Together, our findings uncover a novel mitotic regulation wherein COASY and CBP coordinate an acetylation network to enforce productive mitosis.
Type
Conference
Subject
Cell Line
Humans
Transferases
Cell Cycle Proteins
Microtubule-Associated Proteins
Nuclear Proteins
Mitosis
Protein Binding
Acetylation
CREB-Binding Protein
Aurora Kinase A
Permalink
https://hdl.handle.net/10161/22379
Published Version (Please cite this version)
10.1038/s41467-018-03422-6
Collections
  • Research and Writings
More Info
Show full item record

Scholars@Duke

Chi

Jen-Tsan Ashley Chi

Associate Professor in Molecular Genetics and Microbiology
We are using functional genomic approaches to investigate the nutrient signaling and stress adaptations of cancer cells when exposed to various nutrient deprivations and microenvironmental stress conditions. Recently, we focus on two areas. First, we are elucidating the genetic determinants and disease relevance of ferroptosis, a newly recognized form of cell death. Second, we have identified the mammalian stringent response pathway which is highly similar to bacterial stringent response, but
Mathey-Prevot

Bernard Mathey-Prevot

Research Professor of Pharmacology & Cancer Biology
The central focus of the lab is to understand how signaling pathway architecture and integration result in specific cell fates and how these properties have been hijacked in cancer cells. In particular, we are interested in assessing the extent to which cell-to-cell heterogeneity can affect the temporal dynamics and regulation of signaling pathways. We are focusing on the E2F/Rb network and have established a platform to follow in real time the activation and expression of E2F1 at the
Thompson

J. Will Thompson

Assistant Research Professor of Pharmacology & Cancer Biology
Dr. Thompson's research focuses on the development and deployment of proteomics and metabolomics mass spectrometry techniques for the analysis of biological systems. He is the Assistant Director of the Proteomics and Metabolomics Shared Resource in the Duke School of Medicine. In this role, he enjoys utilizing mass spectrometry 'omics techniques in research collaborations with investigators throughout the Duke community.
Yao

Tso-Pang Yao

Professor of Pharmacology and Cancer Biology
My laboratory studies the regulatory functions of protein acetylation in cell signaling and human disease. We focus on a class of protein deacetylases, HDACs, which we have discovered versatile functions beyond gene transcription. We wish to use knowledge of HDAC biology to develop smart and rational clinical strategies for HDAC inhibitors, a growing class of compounds that show potent anti-tumor and other clinically relevant activities. Currently, there two major research major areas
Alphabetical list of authors with Scholars@Duke profiles.

Material is made available in this collection at the direction of authors according to their understanding of their rights in that material. You may download and use these materials in any manner not prohibited by copyright or other applicable law.

Rights for Collection: Research and Writings

Related items

Showing items related by title, author, creator, and subject.

  • Thumbnail

    LKB1 Loss induces characteristic patterns of gene expression in human tumors associated with NRF2 activation and attenuation of PI3K-AKT. 

    Kaufman, Jacob M; Amann, Joseph M; Park, Kyungho; Arasada, Rajeswara Rao; Li, Haotian; Shyr, Yu; Carbone, David P (Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2014-06)
    Inactivation of serine/threonine kinase 11 (STK11 or LKB1) is common in lung cancer, and understanding the pathways and phenotypes altered as a consequence will aid the development of targeted therapeutic strategies. Gene ...
  • Thumbnail

    Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro. 

    Kuehn, MJ; Schekman, R; Ljungdahl, PO (J Cell Biol, 1996-11)
    In S. cerevisiae lacking SHR3, amino acid permeases specifically accumulate in membranes of the endoplasmic reticulum (ER) and fail to be transported to the plasma membrane. We examined the requirements of transport of the ...
  • Thumbnail

    G protein beta gamma subunits stimulate phosphorylation of Shc adapter protein. 

    Touhara, K; Hawes, BE; van Biesen, T; Lefkowitz, RJ (Proc Natl Acad Sci U S A, 1995-09-26)
    The mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, ...

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University