Nitric oxide loading reduces sickle red cell adhesion and vaso-occlusion in vivo.

Abstract

Sickle red blood cells (SSRBCs) are adherent to the endothelium, activate leukocyte adhesion, and are deficient in bioactive nitric oxide (NO) adducts such as S-nitrosothiols (SNOs), with reduced ability to induce vasodilation in response to hypoxia. All these pathophysiologic characteristics promote vascular occlusion, the hallmark of sickle cell disease (SCD). Loading hypoxic SSRBCs in vitro with NO followed by reoxygenation significantly decreased epinephrine-activated SSRBC adhesion to the endothelium, the ability of activated SSRBCs to mediate leukocyte adhesion in vitro, and vessel obstruction in vivo. Because transfusion is frequently used in SCD, we also determined the effects of banked (SNO-depleted) red blood cells (RBCs) on vaso-occlusion in vivo. Fresh or 14-day-old normal RBCs (AARBCs) reduced epinephrine-activated SSRBC adhesion to the vascular endothelium and prevented vaso-occlusion. In contrast, AARBCs stored for 30 days failed to decrease activated SSRBC adhesivity or vaso-occlusion, unless these RBCs were loaded with NO. Furthermore, NO loading of SSRBCs increased S-nitrosohemoglobin and modulated epinephrine's effect by upregulating phosphorylation of membrane proteins, including pyruvate kinase, E3 ubiquitin ligase, and the cytoskeletal protein 4.1. Thus, abnormal SSRBC NO/SNO content both contributes to the vaso-occlusive pathophysiology of SCD, potentially by affecting at least protein phosphorylation, and is potentially amenable to correction by (S)NO repletion or by RBC transfusion.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1182/bloodadvances.2019031633

Publication Info

McMahon, Timothy J, Siqing Shan, Daniel A Riccio, Milena Batchvarova, Hongmei Zhu, Marilyn J Telen and Rahima Zennadi (2019). Nitric oxide loading reduces sickle red cell adhesion and vaso-occlusion in vivo. Blood advances, 3(17). pp. 2586–2597. 10.1182/bloodadvances.2019031633 Retrieved from https://hdl.handle.net/10161/22407.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

McMahon

Timothy Joseph McMahon

Professor of Medicine

The McMahon Lab at Duke University and Durham VA Medical Center is investigating novel roles of the red blood cell (RBC) in the circulation. The regulated release of the vasodilator SNO (a form of NO, nitric oxide) by RBCs within the respiratory cycle in mammals optimizes nutrient delivery at multiple levels, especially in the lung (gas exchange) and the peripheral microcirculation (O2 transport to tissues). Deficiency of RBC SNO bioactivity (as in human RBCs banked for transfusion), for example, appears to contribute to the serious lung and circulatory problems associated with RBC transfusion in some settings. We have also demonstrated benefit in the use of treatments that exploit RBCs as a vehicle for delivery of SNOs, in both human patients and in model animals.

RBCs also release ATP in response to stimuli including deformation and hypoxia, and the exported ATP also participates in the maintenance of a healthy circulation, according to mechanisms that we are now unraveling.

We use basic and translational approaches to understand the molecular mechanisms by which these RBC-derived signals effect circulatory changes in human health and disease, particularly in the lung. Disease states driving this research include acute and chronic lung diseases such as sepsis (severe infection, such as COVID-19), transfusion-related respiratory problems, sickle cell disease, and pulmonary hypertension of adults and newborns.

Funding: VA and NIH.

Shan

Siqing Shan

Assistant Professor Emeritus of Radiation Oncology

My researches focus on tumor microenvironment physiology and biology (tumor microcirculation, oxygenation and liposomal drug pharmacokenetics in microvascular level), especially the molecular and cellular mechanisms of tumor angiogenesis. In addition to in vitro and ex vivo assays, we apply different animal models to quantitatively investigate the effects of novel biological and chemical agents on tumor cellular behaviors and initiation of early angiogenesis in vivo.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.