Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of COVID-19 in chest radiographs: assessing the impact of imaging parameters using clinical and simulated images

Thumbnail
View / Download
826.2 Kb
Date
2021-02-15
Authors
Fricks, Rafael
Abadi, Ehsan
Ria, Francesco
Samei, Ehsan
Repository Usage Stats
79
views
37
downloads
Abstract
As computer-aided diagnostics develop to address new challenges in medical imaging, including emerging diseases such as COVID-19, the initial development is hampered by availability of imaging data. Deep learning algorithms are particularly notorious for performance that tends to improve proportionally to the amount of available data. Simulated images, as available through advanced virtual trials, may present an alternative in data-constrained applications. We begin with our previously trained COVID-19 x-ray classification model (denoted as CVX) that leveraged additional training with existing pre-pandemic chest radiographs to improve classification performance in a set of COVID-19 chest radiographs. The CVX model achieves demonstrably better performance on clinical images compared to an equivalent model that applies standard transfer learning from ImageNet weights. The higher performing CVX model is then shown to generalize effectively to a set of simulated COVID-19 images, both quantitative comparisons of AUCs from clinical to simulated image sets, but also in a qualitative sense where saliency map patterns are consistent when compared between sets. We then stratify the classification results in simulated images to examine dependencies in imaging parameters when patient features are constant. Simulated images show promise in optimizing imaging parameters for accurate classification in data-constrained applications.
Type
Journal article
Permalink
https://hdl.handle.net/10161/22421
Published Version (Please cite this version)
10.1117/12.2582223
Publication Info
Fricks, Rafael; Abadi, Ehsan; Ria, Francesco; & Samei, Ehsan (2021). Classification of COVID-19 in chest radiographs: assessing the impact of imaging parameters using clinical and simulated images. Medical Imaging 2021: Computer-Aided Diagnosis, 115970A. pp. 1-11. 10.1117/12.2582223. Retrieved from https://hdl.handle.net/10161/22421.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Abadi

Ehsan Abadi

Assistant Professor in Radiology
Ehsan Abadi, PhD is an imaging scientist at Duke University. He serves as an Assistant Professor in the departments of Radiology and Electrical & Computer Engineering, a faculty member in the Medical Physics Graduate Program and Carl E. Ravin Advanced Imaging Laboratories, and a co-Lead in the Center for Virtual Imaging Trials. Ehsan’s research focuses on quantitative imaging and optimization, CT imaging, lung diseases, computational human modeling, and medical imag
Ria

Francesco Ria

Research Associate, Senior
Samei

Ehsan Samei

Reed and Martha Rice Distinguished Professor of Radiology
Dr. Ehsan Samei, PhD, DABR, FAAPM, FSPIE, FAIMBE, FIOMP, FACR is a Persian-American medical physicist. He is a tenured Professor of Radiology, Medical Physics, Biomedical Engineering, Physics, and Electrical and Computer Engineering at Duke University, where he also serves as the Chief Imaging Physicist for Duke University Health System, the director of the Carl E Ravin Advanced Imaging Laboratories, and the director of Center for Virtual Imaging Trials. He is certi
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University